
6/18/2007  2007, Spencer Rugaber 1

XP Methods
(http://www.extremeprogramming.org/rules.html)

1. Planning

2. Designing

3. Coding

4. Testing 



6/18/2007  2007, Spencer Rugaber 2

Method Interrelationships



6/18/2007  2007, Spencer Rugaber 3

1. Planning

1. User stories are written.

2. Release planning creates the schedule.

3. Make frequent small releases.

4. The Project Velocity is measured.

5. The project is divided into iterations.

6. Iteration planning starts each iteration.

7. Move people around.

8. A stand-up meeting starts each day.

9. Fix XP when it breaks.



6/18/2007  2007, Spencer Rugaber 4

1.1 User Stories

• Used for time estimation and planning

– 1, 2 or 3 weeks of ideal development time

• Replace requirements documents

• Written by the customer

• Three sentences

• Source of acceptance tests

• Focus on user needs



6/18/2007  2007, Spencer Rugaber 5

1.2 Release Planning

• Release = iteration*

• Iteration = user story*

• Time or scope (feature) boxed

• Project velocity

• Just-in-time iteration planning

• "scope, resources, time, and quality"

– Management sets 3 of 4; development the 

other



6/18/2007  2007, Spencer Rugaber 6

1.3 Small 

Releases



6/18/2007  2007, Spencer Rugaber 7

1.4 Project Velocity

• Add up estimates for the user stories that were 

finished during an iteration

– Use this as a limit for the next iteration

– [actual time/user-story estimates = fantasy factor]

– [Available time/fantasy factor = estimated time 

allowed]

• Total up the estimates for the programming 

tasks finished during the iteration

– [Same adjustment as above]

• Must still make an initial (uninformed) estimate



6/18/2007  2007, Spencer Rugaber 8

1.5 Iterative Development

• Each iteration 1-3 weeks

• Constant over the course of the project

– Heartbeat

– Promotes accurate, velocity-based estimates



6/18/2007  2007, Spencer Rugaber 9

1.6 Iteration Planning

• 1-3 weeks per iteration

• Based on prioritized user stories and failed 

acceptance tests

– Snow plowing

• Project velocity from the last iteration is 

used to determine how much to do

• Programming tasks written on index cards

– Each task is 1-3 ideal programming days

• Developer selection and time estimation



6/18/2007  2007, Spencer Rugaber 10



6/18/2007  2007, Spencer Rugaber 11

1.7 Move People Around

• Cross training

• Risk reduction strategy

• Pair programming



6/18/2007  2007, Spencer Rugaber 12

1.8 Daily Stand Up Meeting

• Problems, solutions, focus

– Requires co-presence and synchrony



6/18/2007  2007, Spencer Rugaber 13

1.9 Process Improvement

• Explicit rules



6/18/2007  2007, Spencer Rugaber 14

2. Designing

1. Simplicity.

2. Choose a system metaphor.

3. Use CRC cards for design sessions.

4. Create spike solutions to reduce risk.

5. No functionality is added early.

6. Refactor whenever and wherever 

possible.



6/18/2007  2007, Spencer Rugaber 15

2.1 Simplicity

• "Do the simplest thing that could possibly 

work"

• Little, if any, up-front design



6/18/2007  2007, Spencer Rugaber 16

2.2 System Metaphor

• Class and method naming consistency



6/18/2007  2007, Spencer Rugaber 17

2.3 CRC Cards

• Design level

• Simulated execution of a user story

• Completed cards can serve as 

documentation



6/18/2007  2007, Spencer Rugaber 18

2.4 Spike Solutions

• Risk-reduction strategy

• Throw-away solution to a programming 

problem



6/18/2007  2007, Spencer Rugaber 19

2.5 No Early Functionality

• Avoid implementing future requirements

• Avoid added generality



6/18/2007  2007, Spencer Rugaber 20

2.6 Refactor Mercilessly

• Replaces up-front design

– Amortization

• Bad smells

• Refactoring catalog



6/18/2007  2007, Spencer Rugaber 21

3. Coding

1. The customer is always available.

2. Code must be written to agreed standards.

3. Code the unit test first.

4. All production code is pair programmed.

5. Only one pair integrates code at a time.

6. Integrate often.

7. Use collective code ownership.

8. Leave optimization till last.

9. No overtime.



6/18/2007  2007, Spencer Rugaber 22



6/18/2007  2007, Spencer Rugaber 23

3.1 On-Site Customer

• Customer is part of the development team

• Writes user stories

– Supplements with details

• Negotiate priorities

• Helps create test data



6/18/2007  2007, Spencer Rugaber 24

3.2 Coding Standards

• Agreed to before hand

• Promotes collective code ownership



6/18/2007  2007, Spencer Rugaber 25

3.3 Test First

• Write the unit tests before writing the code

• Firms up requirements

• Helps define when the coding is done

• One test; then simplest code to satisfy it; 

then another; ...

• Actually speeds things up



6/18/2007  2007, Spencer Rugaber 26

3.4 Pair Programming

• Improved quality without reduction in 

productivity

• Tactics and strategy

• Jelling



6/18/2007  2007, Spencer Rugaber 27

3.5 Sequential Integration

• Sequential ⇒ clear cut latest version

• Requires a locking mechanism

– Physical token

– Single machine



6/18/2007  2007, Spencer Rugaber 28

3.6 Integrate Often

• Source code repository updates several 

times per day

• Forces frequent communication and rapid 

response to bugs

• One pair at a time integrates

– [Frequent updates required]



6/18/2007  2007, Spencer Rugaber 29

3.7 Collective Code Ownership

• Anyone can change any code

• Unit tests protect integrity

• [Egoless programming] - Weinberg

• [Release bugs imply everyone stops what 

they are doing to help fix the problem]

• Improved understanding of the code

– Risk reduction



6/18/2007  2007, Spencer Rugaber 30

3.8 Optimize Last

• Measure first

• "Make it work, make it right, then make it 

fast"



6/18/2007  2007, Spencer Rugaber 31

3.9 No Overtime

• Cannot be sustained

• Adding resources typically fails

• Better to reduce scope



6/18/2007  2007, Spencer Rugaber 32

4. Testing

1. All code must have unit tests.

2. All code must pass all unit tests before it 

can be released.

3. When a bug is found tests are created.

4. Acceptance tests are run often and the 

score is published.



6/18/2007  2007, Spencer Rugaber 33

4.1 Unit Tests

• Framework

• All code

• Write tests before code

• Protects your code when others change it

• Enables refactoring

• Enables frequent integration



6/18/2007  2007, Spencer Rugaber 34

4.2 Tests Control Release 

• Tests released with code

• No release without all tests being passed



6/18/2007  2007, Spencer Rugaber 35

4.3 Unit Tests for Bug Fixes

• Acceptance test

• Leads back to unit tests



6/18/2007  2007, Spencer Rugaber 36

4.4 Acceptance Tests

• Created from user stories

• Black box system tests

• Verified by customer

• Used as a progress metric [hurdle scoring]



6/18/2007  2007, Spencer Rugaber 37

Critique

• Volatile requirements

• Small groups

• Modest projects; functionality dominant

• Customer availability

• Limited external document requirements

• Discipline replaces management control

• Teamwork


