
6/18/2007 2007, Spencer Rugaber 1

XP Methods
(http://www.extremeprogramming.org/rules.html)

1. Planning

2. Designing

3. Coding

4. Testing

6/18/2007 2007, Spencer Rugaber 2

Method Interrelationships

6/18/2007 2007, Spencer Rugaber 3

1. Planning

1. User stories are written.

2. Release planning creates the schedule.

3. Make frequent small releases.

4. The Project Velocity is measured.

5. The project is divided into iterations.

6. Iteration planning starts each iteration.

7. Move people around.

8. A stand-up meeting starts each day.

9. Fix XP when it breaks.

6/18/2007 2007, Spencer Rugaber 4

1.1 User Stories

• Used for time estimation and planning

– 1, 2 or 3 weeks of ideal development time

• Replace requirements documents

• Written by the customer

• Three sentences

• Source of acceptance tests

• Focus on user needs

6/18/2007 2007, Spencer Rugaber 5

1.2 Release Planning

• Release = iteration*

• Iteration = user story*

• Time or scope (feature) boxed

• Project velocity

• Just-in-time iteration planning

• "scope, resources, time, and quality"

– Management sets 3 of 4; development the

other

6/18/2007 2007, Spencer Rugaber 6

1.3 Small

Releases

6/18/2007 2007, Spencer Rugaber 7

1.4 Project Velocity

• Add up estimates for the user stories that were

finished during an iteration

– Use this as a limit for the next iteration

– [actual time/user-story estimates = fantasy factor]

– [Available time/fantasy factor = estimated time

allowed]

• Total up the estimates for the programming

tasks finished during the iteration

– [Same adjustment as above]

• Must still make an initial (uninformed) estimate

6/18/2007 2007, Spencer Rugaber 8

1.5 Iterative Development

• Each iteration 1-3 weeks

• Constant over the course of the project

– Heartbeat

– Promotes accurate, velocity-based estimates

6/18/2007 2007, Spencer Rugaber 9

1.6 Iteration Planning

• 1-3 weeks per iteration

• Based on prioritized user stories and failed

acceptance tests

– Snow plowing

• Project velocity from the last iteration is

used to determine how much to do

• Programming tasks written on index cards

– Each task is 1-3 ideal programming days

• Developer selection and time estimation

6/18/2007 2007, Spencer Rugaber 10

6/18/2007 2007, Spencer Rugaber 11

1.7 Move People Around

• Cross training

• Risk reduction strategy

• Pair programming

6/18/2007 2007, Spencer Rugaber 12

1.8 Daily Stand Up Meeting

• Problems, solutions, focus

– Requires co-presence and synchrony

6/18/2007 2007, Spencer Rugaber 13

1.9 Process Improvement

• Explicit rules

6/18/2007 2007, Spencer Rugaber 14

2. Designing

1. Simplicity.

2. Choose a system metaphor.

3. Use CRC cards for design sessions.

4. Create spike solutions to reduce risk.

5. No functionality is added early.

6. Refactor whenever and wherever

possible.

6/18/2007 2007, Spencer Rugaber 15

2.1 Simplicity

• "Do the simplest thing that could possibly

work"

• Little, if any, up-front design

6/18/2007 2007, Spencer Rugaber 16

2.2 System Metaphor

• Class and method naming consistency

6/18/2007 2007, Spencer Rugaber 17

2.3 CRC Cards

• Design level

• Simulated execution of a user story

• Completed cards can serve as

documentation

6/18/2007 2007, Spencer Rugaber 18

2.4 Spike Solutions

• Risk-reduction strategy

• Throw-away solution to a programming

problem

6/18/2007 2007, Spencer Rugaber 19

2.5 No Early Functionality

• Avoid implementing future requirements

• Avoid added generality

6/18/2007 2007, Spencer Rugaber 20

2.6 Refactor Mercilessly

• Replaces up-front design

– Amortization

• Bad smells

• Refactoring catalog

6/18/2007 2007, Spencer Rugaber 21

3. Coding

1. The customer is always available.

2. Code must be written to agreed standards.

3. Code the unit test first.

4. All production code is pair programmed.

5. Only one pair integrates code at a time.

6. Integrate often.

7. Use collective code ownership.

8. Leave optimization till last.

9. No overtime.

6/18/2007 2007, Spencer Rugaber 22

6/18/2007 2007, Spencer Rugaber 23

3.1 On-Site Customer

• Customer is part of the development team

• Writes user stories

– Supplements with details

• Negotiate priorities

• Helps create test data

6/18/2007 2007, Spencer Rugaber 24

3.2 Coding Standards

• Agreed to before hand

• Promotes collective code ownership

6/18/2007 2007, Spencer Rugaber 25

3.3 Test First

• Write the unit tests before writing the code

• Firms up requirements

• Helps define when the coding is done

• One test; then simplest code to satisfy it;

then another; ...

• Actually speeds things up

6/18/2007 2007, Spencer Rugaber 26

3.4 Pair Programming

• Improved quality without reduction in

productivity

• Tactics and strategy

• Jelling

6/18/2007 2007, Spencer Rugaber 27

3.5 Sequential Integration

• Sequential ⇒ clear cut latest version

• Requires a locking mechanism

– Physical token

– Single machine

6/18/2007 2007, Spencer Rugaber 28

3.6 Integrate Often

• Source code repository updates several

times per day

• Forces frequent communication and rapid

response to bugs

• One pair at a time integrates

– [Frequent updates required]

6/18/2007 2007, Spencer Rugaber 29

3.7 Collective Code Ownership

• Anyone can change any code

• Unit tests protect integrity

• [Egoless programming] - Weinberg

• [Release bugs imply everyone stops what

they are doing to help fix the problem]

• Improved understanding of the code

– Risk reduction

6/18/2007 2007, Spencer Rugaber 30

3.8 Optimize Last

• Measure first

• "Make it work, make it right, then make it

fast"

6/18/2007 2007, Spencer Rugaber 31

3.9 No Overtime

• Cannot be sustained

• Adding resources typically fails

• Better to reduce scope

6/18/2007 2007, Spencer Rugaber 32

4. Testing

1. All code must have unit tests.

2. All code must pass all unit tests before it

can be released.

3. When a bug is found tests are created.

4. Acceptance tests are run often and the

score is published.

6/18/2007 2007, Spencer Rugaber 33

4.1 Unit Tests

• Framework

• All code

• Write tests before code

• Protects your code when others change it

• Enables refactoring

• Enables frequent integration

6/18/2007 2007, Spencer Rugaber 34

4.2 Tests Control Release

• Tests released with code

• No release without all tests being passed

6/18/2007 2007, Spencer Rugaber 35

4.3 Unit Tests for Bug Fixes

• Acceptance test

• Leads back to unit tests

6/18/2007 2007, Spencer Rugaber 36

4.4 Acceptance Tests

• Created from user stories

• Black box system tests

• Verified by customer

• Used as a progress metric [hurdle scoring]

6/18/2007 2007, Spencer Rugaber 37

Critique

• Volatile requirements

• Small groups

• Modest projects; functionality dominant

• Customer availability

• Limited external document requirements

• Discipline replaces management control

• Teamwork

