
6/18/2007  2007, Spencer Rugaber 1

Case Study
Architecture Migration:

Transition from Mainframe
Batch Processing to Web

Services
Spencer Rugaber

College of Computing

Georgia Institute of Technology

June 20, 2007

6/18/2007  2007, Spencer Rugaber 2

Outline
• Introduction

– Problem statement
– Motivation
– Existing system
– Web services
– Running example

• Methodology
– Requirements analysis
– Domain analysis and model generation
– Use case analysis
– Services definition/identification
– High-level design
– Low-level analysis and design via - enterprise
patterns

– Validation of end result

• Lessons Learned

6/18/2007  2007, Spencer Rugaber 3

Problem Statement

• Status: Existing mainframe legacy
applications

• Target: Web services

• Constraints
– Incremental migration

– Incomplete knowledge of application

6/18/2007  2007, Spencer Rugaber 4

Motivations for Migration

• Reduced platform and language dependence

• Improved accessibility

• Enhanced long-term flexibility and maintainability

• Improve customer-orientation

• Enable user interface enhancements

6/18/2007  2007, Spencer Rugaber 5

Mainframe Legacy Applications

• Cobol

• Batch processing

• Synchronous communications

• DBMS, proprietary and VSAM files

• Complexity
– Multiple Cobol programs in separate files

– Multiple data files

– A job consists of a subset of the former accessing a
subset of the latter

6/18/2007  2007, Spencer Rugaber 6

Web Services

• Internet access

• Standard data formats
– XML, SOAP, HTML

• Structured around services
– Described via WSDL

• Indexing (yellow pages) support
– UDDI

• Service-oriented architecture

6/18/2007  2007, Spencer Rugaber 7

Situation

• Overall system
– Payment reconciliation by customer service
representatives (CSRs) comparing actual
payments to invoiced amounts

• 90KLOC Cobol program in 64 files

• Interaction via CICS displays on PCs
running 3270 terminal emulators

• Numerous VSAM and "flat" text files

6/18/2007  2007, Spencer Rugaber 8

Methodology

• After-the-fact organization of the steps we
took to migrate two web services
– Display of status codes

– Current account display and update

6/18/2007  2007, Spencer Rugaber 9

Migration Project Constraints

• Incremental, non-disruptive migration

• J2EE (JEE) infrastructure running on IBM
Websphere

• Partial documentation and test data

• No access to users (CSRs)

• No live execution; stand-alone prototyping
only

6/18/2007  2007, Spencer Rugaber 10

Requirements Analysis
• Incremental (service at a time) approach meant we were
not able to understand the entire system before
beginning

• No access to CSRs meant we had to infer usability
requirements

• Sources of requirements
– CICS screens

– Use cases

– Source code

– Documentation

• Existing system functionality acted as the ultimate
source of requirements

6/18/2007  2007, Spencer Rugaber 11

Domain Analysis

• Domain is an application area (set of
related applications)

• Domain analysis is system analysis on a
set of related applications

• Domain model describes the vocabulary
and relationship and architecture typical of
applications in the domain

6/18/2007  2007, Spencer Rugaber 12

Domain Analysis - 2

• We used a glossary plus a UML class
diagram to express our domain model

• We added to these documents as we
learned more about the application

6/18/2007  2007, Spencer Rugaber 13

UML Class Diagrams

• We used a subset of the UML notation to
capture the structural aspects of our domain
model
– Rectangles denote classes/concepts/actors/ entities

– These may contain responsibilities/services/
operations

– These may contain typed attributes

– Lines between classes denote relationships
(specialization/association/dependency)

• We intentionally did not use other UML features

6/18/2007  2007, Spencer Rugaber 14

Example
Domain Model

-amount : Decimal

Payment

-policyID : Integer

Policy

-name : String
-number : Integer
-code : Integer
-remarks : String

Account

-name : String
-address : String
-idNo : Integer

PolicyHolder

-number : Integer
-dueDate : Integer
-amount : Decimal
-arrivalDate : Integer
-payDate : Integer
-total : Decimal

Invoice

ManagesPaymentsFor

BilledViaRemitsTo

DescribedBy

Insures

ReconciledAgainst

6/18/2007  2007, Spencer Rugaber 15

Glossary
• Billing System: Generates invoices (batch process)

for the payment of premiums

• Group: A payroll account; generally an employer with
multiple employees insured under multiple policies.
Thus, a group is associated with a group of policies, and is identified by a
group number and name, with an employer address and other information.

• Invoice: A request, submitted to an account/group, for payment for
premiums due under policies of the account. Contains a record for each
policy number for which an amount (the premium) is being billed. The
record specifies the amount billed, amount received, insured name, etc.

• Invoice control data: Includes header and summary data; how many
policies on the invoice; amount due

• Policy: Each insurance policy insures a person against some risk. Policy
record has an id number, employee number, insured name, etc.

• Premiums: Amount billed (on an invoice) under a policy; deducted from
employees’ paychecks and remitted by their employer. An employee may
have several policies, and thus may owe several premiums on an invoice.

• Reconciliation: Comparison of the submitted amounts with the invoiced
amounts.

6/18/2007  2007, Spencer Rugaber 16

Use Case Analysis

• A use case is a narrative description of the
actual use of a system
– Typically includes actors, actions and objects

– May be structured or unstructured

• Enables the detection of dependencies
and missing elements

• Provides a strong indicator of the
existence of a service

6/18/2007  2007, Spencer Rugaber 17

Example Unstructured Use Case
• Scan_Invoices – George, a customer service representative, gets

to work at 8am, sits down at his terminal and enters his desk code.
His first job for the day is to begin working on a related group
(0CP57) of customers, notorious for their unpaid/late/underpaid
premiums. He invokes the Scan_Invoices service, specifying group
0CP57, and is presented with a list of invoices for that group.
(Invoices over three months old and paid as billed are coded 00 “Out
of Date,” and are not accessible.) There is a line of information on
his screen for each of the first twelve invoices; he can scroll and look
at the other invoices. The invoices are presented in chronological
order, most recent first, and each line includes various pieces of
information such as the total amount billed and total amount
received on the invoice, and a status code. George stares at the
screen a moment, then goes for his morning cup of coffee.

6/18/2007  2007, Spencer Rugaber 18

Example Structured Use Case
Use Case UC1: InquireAboutInvoice

Primary Actor: George, a customer service representative

Preconditions: None.

Postconditions: The invoice information is found and displayed

Main Success Scenario:

1. George requests an invoice enquiry for a group number.

2. The prototype displays the following information: Basic group
information; Billing information

3. George selects an invoice by specifying a line number or invoice
number

4. Service displays invoice information to George

Extensions:

a. If the service fails, the service issues a warning to George and exits.

6/18/2007  2007, Spencer Rugaber 19

Service Definition

• The single most important activity is
deciding on exactly what the services are
– They may already exist as modular units in
the legacy system

– They may be new

– They may be determined by the underlying
data model

– They may have to be composed from various
parts of the existing system

6/18/2007  2007, Spencer Rugaber 20

What is a Service?

• A service is a modular application with a defined and
self-documented use protocol (interface) comprising one
or more operations

• The service is published and its operations are
dynamically invoked across the network, generally via
XML messages sent over the SOAP protocol
– XML stands for eXtendable Markup Language and is a cross-
platform, extensible, text-based standard for representing data

– SOAP is Simple Object Access Protocol and is an XML-based
protocol that follows the HTTP request-and-response model

6/18/2007  2007, Spencer Rugaber 21

Four Tenets of SOA
(www.bpminstitute.org/articles/article/article/the-four-tenets-of-service-orientation.html)

• Boundaries are explicit. This means there is no ambiguity about whether
the code or data resides inside or outside of the service

• Services are autonomous. This means each service has its own
implementation, deployment, and operational environment. There is no
presiding authority within a service-oriented environment. Services are
autonomous in that they are isolated and decoupled; they are designed and
deployed independently of one another and may only communicate using
contract-driven messages and policies

• Services expose to the world schema and contract, but do not expose

to the world implementation. Schema describes the format and the
content of the messages, while contracts describes message sequences
allowed in and out of the service

• Service compatibility is based on a policy. Formal criteria exist for
getting making use of a service. The criteria are located in a document that
outlines the rules for using the service

6/18/2007  2007, Spencer Rugaber 22

Service Design Principles
(msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/dataoutsideinside.asp)

• Service interfaces should accept a well-defined input
message and respond with an output message

• Internal implementation details should not be leaked
outside of a service boundary

• Contracts should be designed with the assumption that
once published, they cannot be modified

• Isolate services from failure. From a consumer
perspective, plan for unreliable levels of service
availability and performance. From a provider
perspective, expect misuse of your service

6/18/2007  2007, Spencer Rugaber 23

Service Design Principles
(msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/dataoutsideinside.asp)

• Contracts should be as explicit as possible to minimize
misinterpretation. Additionally, contracts should be
designed to accommodate future versioning of the
service via the extensibility of both the XML syntax and
the SOAP processing model

• A service’s internal data format should be hidden from
consumers while its public data schema should be
immutable

• Version services only when changes to the service’s
contract are unavoidable

6/18/2007  2007, Spencer Rugaber 24

Issue
• One motivation for determining what is a
service is indexing. That is, you want to
organize services in such a way that
potential customers can find them (using
UDDI). These tend to be coarse-grained or
business services

• Another motivation for organizing services
is in units that are meaningful to the end
user. These tend to be fine grained

6/18/2007  2007, Spencer Rugaber 25

Example Services and Operations
• Account (Group) Administration

– CreateAccount, GetDetails, ModifyDetails

• Invoice Activity Helper
– RecordInvoiceActivity, GetInvoiceActivity,
GetInvoiceActivityByPolicyNumber, DeleteReconciliationActivity

• Invoicing
– CreateInvoice, DeleteInvoice, ModifyInvoice,
GetInvoicesForAccount, UpdateEmployeeNumberForInvoice,
PolicyLine, UpdateAmountReceivedForInvoice, PolicyLine,
UpdateMonthsForInvoicePolicyLine, PayInvoice

6/18/2007  2007, Spencer Rugaber 26

High-level Design – Hybrid
Three+ Layered Architecture

• Legacy system architectural style
– Batch processing; master-file update

• Traditional three-tier distributed system architecture
– UI, business logic, database

• Modified three tier architecture
– Break business logic into domain independent and domain-
specific parts

– Use OO style for business logic

– Use Object-Relational Mapping (ORM) interaction with database

6/18/2007  2007, Spencer Rugaber 27

Typical JEE
Architecture

(java.sun.com/j2ee/1.4/docs/
tutorial/doc)

6/18/2007  2007, Spencer Rugaber 28

Advantages
• Layers (tiers) are loosely coupled, making it possible to divide up

development work among available workers

• It is easier to understand the system and to locate desired
functionality

• It is easier to modify the system, and modifications are less likely to
affect other layers

• Service orientation achieves loose coupling among interacting
software agents, with a defined, stable interface
– For example, one module might be implemented in .NET, another in

Java, and they can still talk

• Services encapsulate common interactions with applications,
avoiding code duplication.

6/18/2007  2007, Spencer Rugaber 29

The Fourth Tier
• We have chosen to partition the business logic layer into
two pieces: application logic and domain logic

• Application logic, sometimes called workflow logic,
involves application-specific responsibilities such as a
requirement to notify some other application about an
event

• Domain logic relates purely to the problem domain, for
example, a set of business strategies for calculating
revenue recognition

• It is helpful to keep domain logic and application logic
separate because there may be multiple applications
with different workflow requirements that need to access
and use the same domain logic

• Lower-level design patterns facilitate this separation

6/18/2007  2007, Spencer Rugaber 30

Enterprise Design Patterns
• To facilitate movement from high-level to low-level
design, we made use of enterprise design patterns

• A design pattern is a solution to a problem in a context.
Typically, an object-oriented design pattern guides you
through the process of solving a common problem, such
as how to visit all of the nodes in a complex data
structure

• A multi-tiered architecture presents an opportunity to
make us of enterprise design patterns. For example,
business (domain) logic can be implemented via the
object-oriented (“OO”) domain model design pattern

6/18/2007  2007, Spencer Rugaber 31

Enterprise Design Patterns - 2

• Services are defined and exposed so disparate
applications can integrate the functionality they need,
from available services. The services are facilitated via
the layered architecture that provides a service façade at
the “top” of the business tier. The domain business logic
itself is implemented via interactions between fine-
grained domain-entity objects

• A helpful rule-of-thumb we followed is to design object-
oriented, and integrate service-oriented

6/18/2007  2007, Spencer Rugaber 32

Issue: Distribution

• Designers may be tempted to distribute objects
on web and business layers between two
machines. We recommend against this
architectural alternative

• Although JEE makes it possible to put the web
tier on one machine and the business tier on
another, this will result in slower response times
due to expensive network communications
between those layers

6/18/2007  2007, Spencer Rugaber 33

Distribution - 2
• It is better to scale up by clustering server
instances instead of distributing tiers, so you can
use local, not remote, interfaces between web
and business layers

• Then, service requests can be directed to
different computers in the cluster, as dictated by
load balancing

• Use the service layer pattern with operation
script approach, delegating to POJO (plain old
Java objects) domain objects persisted by an
ORM tool

6/18/2007  2007, Spencer Rugaber 34

Distribution - 3

• By running all in one process, we also may avoid the
necessity for tedious-to-construct value objects to
conserve network bandwidth

• However, in an enterprise-wide service-oriented
architecture, avoiding remote accesses cannot always
be done without duplicating code, because needed
services may already exist as web services exposed in
disparate (remote) systems

• In this case it is probably best to use the existing
services, paying the network connection cost and taking
this cost into account in the design.

6/18/2007  2007, Spencer Rugaber 35

Service Oriented Architectures
(SOA)

• Buzz word - many different definitions

• Common themes
– Loosely coupled services

– Platform independence
• REST, RPC, DCOM, CORBA, Web Services, .NET

– Well-defined interfaces; information hiding

6/18/2007  2007, Spencer Rugaber 36

6/18/2007  2007, Spencer Rugaber 37

SOA Guiding Principles
(Wikipedia)

• Reuse, granularity, modularity,
composability, componentization, and
interoperability

• Compliance to standards

• Services identification and categorization,
provisioning and delivery, and monitoring
and tracking

6/18/2007  2007, Spencer Rugaber 38

Low-Level Analysis And Design
Via Enterprise Patterns

• Outside in (UI, database, business logic)
– Business logic (BL) is most complex, so leave
it for last

• Strict recreation of screen appearance
– UI enhancements allowed only after
verification of identical behavior

6/18/2007  2007, Spencer Rugaber 39

UI Extraction
• Start with CICS screen

• Break out regions

• Categorize

• Find corresponding code units

Access to other functionsFunction keys

User inputType-in

Related fields in the same recordGanging

Boundary charactersFormatting

HeadingLabel

Computed business dataData

6/18/2007  2007, Spencer Rugaber 40

Data Modeling

• Use identified code regions to determine
data sources

• Backward dataflow analysis

• Incremental construction of logical data
model
– Also use documentation, file structure, etc.

• Candidate target objects

6/18/2007  2007, Spencer Rugaber 41

Business Rule Extraction

• Only study source code to answer specific
questions
– Reduces reverse engineering costs

• But, once a section is studied, identify it as
to role (UI, DB, BL)

• Construct service flow diagram
– Slice of original program related to screen
population

6/18/2007  2007, Spencer Rugaber 42

BL Extraction Details

• Find reads/writes from/to the GUI

• Look for involved “if” statements, taking different actions based on
data input from the GUI or read from the database

• Look for validation checks on data entered via the GUI

• Look for write/update to the database or data files

• Three forms of textual/spreadsheet representations (views) of
business rules are
– Procedure oriented: section-by-section documentation of Cobol code

– Identifier oriented: name, description, expression as a business rule,
where used

– Controls oriented: program function key description

6/18/2007  2007, Spencer Rugaber 43

Low-Level Design Implications

• We used CMP (Container Managed
Persistence) EJB Entity Beans initially

• We moved to POJO’s and an ORM tool
(Hibernate) as the business layer gets more
complex
– Less conceptual overhead

– Closer mapping to domain and DB concepts

6/18/2007  2007, Spencer Rugaber 44

ECÓLE
• Light-weight static analyzer to visualizing software dependencies on

system resources for a given vertical slice of interest
– Program, data file, program function key

• ECÓLE stands for Enterprise COBOL Ligature Explorer
– A ligature occurs where two or more letterforms are written as a unit

• Transitive closure on software resources (programs, data tables,
and copybooks), a ligature symbolizes the graph node or the shared
component for a particular software resource

• Differentiates program calls into three types
– Direct program call

– Call through an upper level navigator (manager of control flow)

– Call via program function key as pressed by the user

6/18/2007  2007, Spencer Rugaber 45

ECÓLE - 2
• Once the source code has been analyzed, the
extracted software dependencies are stored in a
PostgresSQL database

• The visualization phase involves the tool
console querying the Knowledge Base and
writing out the representative GraphViz graph
file

• A free third-party visualizer (ZGRViewer) is then
invoked by the tool console to display the
resultant software dependency graph

6/18/2007  2007, Spencer Rugaber 46

Enterprise Patterns
Typical Scenario

• Creation of database tables

• Generation of entity and data access beans

• Addition of a session bean with some
simple business logic

• Use of JEE web service wizard to create a
web service client for the session bean

6/18/2007  2007, Spencer Rugaber 47

Patterns Used
Front Controller

• Front Controller (MVC variant), Service Layer,
Domain Model, Business Delegate, Mapper and
Data Mapper

• Model-View-Controller pattern involves both web
and business layers
– Separate the business logic, web layer, and the
acceptance of inputs into the web layer

– Front Controller uses one controller that handles all
requests for a web site

6/18/2007  2007, Spencer Rugaber 48

Service Layer Pattern
• Define an application’s boundary with a layer of services
that establishes a set of available operations and
coordinates the application’s response in each operation

• The recommended approach is to put the
application/workflow logic into relatively thick Service
Layer classes (e.g., stateless EJB session beans) that
delegate to domain object classes for domain logic

• Putting application logic into pure domain object classes
can make those classes less reusable across
applications and can make it harder to re-implement the
application logic in a workflow tool

6/18/2007  2007, Spencer Rugaber 49

Domain Model Pattern

• Use an object model of the domain, where objects
correspond to possibly generalized entities in the
domain, and incorporate both behavior and data
– The Mapper pattern handles mapping the object’s data to a row
in a database table.

• Result is a web of interconnected, highly coherent,
loosely coupled objects where business behavior is
distributed

6/18/2007  2007, Spencer Rugaber 50

Business Delegate Pattern

• Provides a class in the web tier that duplicates methods
to be invoked on some session bean in the business
layer

• There is thus a one-to-one correspondence between
web layer methods and business layer methods; a web
layer method delegates to the corresponding business
layer method

• This uncouples the layers; you can stub in some code in
the delegate object in order to test the web layer before
the business layer functionality exists

6/18/2007  2007, Spencer Rugaber 51

Mapper and Data Mapper

• A Mapper is an object that sets up communication between two
independent objects (in our case, an object in the business layer and a table
in the database)
– Objects that the mapper separates are not aware of each other or the mapper

• A Data Mapper, implemented via an ORM tool, is a layer of Mappers that
moves data between objects and a database

• A rich business layer implemented using the domain model pattern differs
significantly from the (non-object-oriented) relational database design
– It involves inheritance, collections, strategies and other patterns, and many small

interconnected objects; therefore, it is hard to map to the database

– ORM tools allow for a natural OO programming model for the business layer,
with inheritance, polymorphism, composition, and collections

– ORM tools support ultra-fine-grained object models, a rich variety of mappings,
high scalability, and object oriented query languages similar to conventional SQL
but including additional object oriented query functionality

6/18/2007  2007, Spencer Rugaber 52

Value Object

• Also called a data transfer object encapsulates attributes
from an entity bean in a class so they can be passed
around and used

• Useful when the information is being passed over an
expensive network connection

• If the connection is local, use of coarse-grained value
objects is generally not necessary or advised

• It is more clear and flexible to pass fine-grained objects
corresponding to domain entities

6/18/2007  2007, Spencer Rugaber 53

Service Locator

• Makes web layer lookup of business layer
services more efficient

• When you create an interface to a service, save
the reference object in a map object, associating
it with the name of the lower level service

• On subsequent accesses, instead of re-creating
the local home interface, look up the service in
the map and re-use it

6/18/2007  2007, Spencer Rugaber 54

Validation
• Use cases

– Elicit feedback from customer
– Use as a source of acceptance tests

• Code analysis
– Have all sections of the code been assigned a role?

• Have all screen elements been accounted for?
• Have all data accesses been accounted for?
• Does the derived data model correspond to that
indicated by existing files and database schema

• Verify extracted business logic with customer
• Bit-for-bit compatible with existing system on test cases

6/18/2007  2007, Spencer Rugaber 55

Lessons Learned

• High cost of upfront reverse engineering
can be amortized

• Web services technology is intricate
requiring significant effort to learn
– Support tools, such as WASD, are necessary

• JCA is promising technology for
incremental integration

6/18/2007  2007, Spencer Rugaber 56

Resources
• H. M. Hess. “Aligning Technology and Business:
Applying Patterns for Legacy Transformation.” IBM
Systems Journal, 44(1), 2005.

• William M. Ulrich. Legacy Systems Transformation
Strategies. Prentice Hall, 2002.

• Martin Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2003.

• Olaf Zimmerman, Mark Tomlinson and Stefan Peuser.
Perspectives on Web Services. Springer, 2003.

6/18/2007  2007, Spencer Rugaber 57

Resources - 2
• Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

• Michael C. Feathers. Working Effectively with Legacy
Code. Prentice Hall, 2005.

• Craig Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design and
Iterative Development. Third Edition, Prentice Hall, 2005.

