
5/18/2007  2007, Spencer Rugaber 1

Architectural Styles and Non-

Functional Requirements

• Jan Bosch. Design and Use of Software 

Architectures. Addison-Wesley, May 19, 

2000.



5/18/2007  2007, Spencer Rugaber 2

Performance

• That attribute of a computer system that 

characterizes the timeliness of the service 

delivered by the system - SEI

• Measures

– Response time, throughput, capacity, utilization

• Devices

– Caching

– Concurrency

– Memory management



5/18/2007  2007, Spencer Rugaber 3

Maintainability

• Extent to which enhancements can be readily added to a 

system

– Also called evolvability, flexibility, adaptability

• Measures

– Coupling

– Cohesion

• Devices

– Encapsulation

– Published interfaces

– Subclassing

– Indirection

– Wrapping



5/18/2007  2007, Spencer Rugaber 4

Reliability

• Likelihood of failure in a given time period; 

continuity of service

• Measures

– Mean Time To Failure (MTTF)

• Devices

– Redundancy, fault tolerance, recovery blocks



5/18/2007  2007, Spencer Rugaber 5

Safety

• Extent to which system protects against injury, loss of life 

or property damage; absence of catastrophic 

consequences

• Measures

– Interaction complexity, time coupling, fault-tree analysis

• Devices

– Hardware interlocks

– Fault containment



5/18/2007  2007, Spencer Rugaber 6

Security

• Extent to which system protects against unauthorized 

intrusion; confidentiality

• Measures

– Levels (confidential, top secret); formal proof

• Devices

– Authentification/authorization

– Security kernels

– Encryption

– Auditing and logging

– Access control



5/18/2007  2007, Spencer Rugaber 7

Pipe and Filter
• Performance: concurrency and buffering enhances 

throughput, but context switches can slow things down

• Maintainability: independent components improves 

reuse, but requirements changes can effect multiple 

components

• Reliability: reduced reliability due to "weakest link" 

(serial dependencies); that is, redundancy is antithetical

• Safety: reduced by multiple dependencies but 

verification may be enhanced because all output comes 

from a single source

• Security: simplicity increases opportunities for 

authentification, encryption and implementation of 

security levels



5/18/2007  2007, Spencer Rugaber 8

Layering
• Performance: response to external events must be 

passed up and down the layers; increased context 

swapping

• Maintainability: stable protocols lead to well-defined 

and reusable components; it may be possible to replace 

an entire layer

• Reliability: because an event may be "handled" in 

multiple layers, reliability is reduced; however, higher 

layers may have the oversight to provide redundancy

• Safety: easy to insert safety-monitoring layers

• Security: security layers can be added to intercept and 

evaluate external events before they can compromise a 

system



5/18/2007  2007, Spencer Rugaber 9

Blackboard
• Performance: lack of well-defined control flows may 

lead to redundant, administrative behavior (polling of 

repository)

• Maintainability: independent components enhance 

flexibility but changes to a common control paradigm or 

data format may be pervasive

• Reliability: independence of components can increase 

resilience; no overall definition of system behavior 

makes identification of problem situations difficult

• Safety: blackboard can promote spreading of bad data

• Security: access control enhanced because of common 

data storage; but dynamic addition of new components 

may reduce confidence



5/18/2007  2007, Spencer Rugaber 10

Object Orientation
• Performance: small objects lead to multiple context 

switches

• Maintainability: independent components can localize 

changes; but objects store references to each other 

increasing dependencies

• Reliability: decentralized control reduces opportunity for 

oversight; but encapsulation can reduce vulnerability to 

unintended interactions

• Safety: correspondence between real-world entities and 

objects improves intentionality and accountability

• Security: fragmentation (negative) and encapsulation 

(positive); explicit user interface objects can reduce 

vulnerability



5/18/2007  2007, Spencer Rugaber 11

Implicit Invocation

• Performance: bookkeeping and indirection; 

extra communications

• Maintainability: increased reuse due to 

independence

• Reliability: broadcast enables system-wide 

handling; increased interaction complexity

• Safety: interaction complexity

• Security: fragmentation (negative) and 

encapsulation (positive)



5/18/2007  2007, Spencer Rugaber 12

Summary

• Performance: concurrency from independent 

components can improve throughput; but distributed 

responsibility can lead to multiple context swaps

• Maintainability: flexibility in the face of requirements 

change; that is, what kinds of changes can affect 

multiple components; how easy is it to plug and play 

components

• Reliability: isolation of problems in single components; 

opportunities for redundancy and for oversight

• Safety: complexity, isolation

• Security: limited interfaces


