
5/18/2007 2007, Spencer Rugaber 1

Software Architecture
(Informal Definition)

• The organization of a system into

component subsystems or modules

• Box and Arrow diagrams

• Iteratively refined

• Driven by non-functional requirements

• Often makes use of stereotypical

architectural styles

5/18/2007 2007, Spencer Rugaber 2

Architecture (USP Definition)
The set of significant decisions about the organization of a

software system, the selection of the structural elements and

their interfaces by which the system is composed, together

with their behavior as specified in the collaborations among

those elements, the composition of these structural and

behavioral elements into progressively larger subsystems,

and the architectural style that guides this organization: these

elements and their interfaces, their collaborations, and their

composition. Software architecture is concerned not only with

structure and behavior but with usage, functionality,

performance, resilience, reuse, comprehensibility, economics

and technology constraints and trade-offs, and aesthetic

concerns.

5/18/2007 2007, Spencer Rugaber 3

Representing Architectures

• Component: computational or data element

plus interface (ports) to the rest of the system

– Requires: what the component needs from the rest

of the system

– Provides: what the component supplies to the rest

of the system

• Connector: communication protocols among

components

• Configuration: components hooked up with

connectors

5/18/2007 2007, Spencer Rugaber 4

Architectural Styles

• High-level, generic abstractions summarizing

a related set of design decisions

• Example: client-server

– What are the decisions?

• Benefits

– Encoded experience

– Standards: validation; selection criteria

– Reuse

– Support of process

5/18/2007 2007, Spencer Rugaber 5

Catalog Of Architectural

Styles

• Master control: hierarchical call and return

• Pipe and filter: one-way, sequential, stdin-

stdout, ASCII streams

• Batch sequential: validate, edit, update cycle

• Implicit invocation: callbacks, registration-

broadcast

• Table-driven interpreter: parse and dispatch

5/18/2007 2007, Spencer Rugaber 6

More Styles

• Client-server: transaction processing, multi-

tiers

• Process control: with feedback loop

• Blackboard: repository, opportunistic control,

cooperating agents

• Shared memory: with locks for

synchronization

• Production systems: rule base, conditional

firing

5/18/2007 2007, Spencer Rugaber 7

And More

• Coroutines: inverted implementation

• Abstract data type: ADT, hide representation

• Layered architecture: abstract machines,

limited visibility

• State-transition systems: reactive, real-time

• Object-oriented: asynchronous message

passing, independent threads of control

• Peer-to-peer: equal partners sharing

responsibility

5/18/2007 2007, Spencer Rugaber 8

Style Issues

• Some systems have more than one style

– Heterogeneous

• Domain-specific software architecture (DSSA)

– Sometimes called reference architecture

• Semantics

• Architecture Description Languages (ADLS)

– Acme, Wright, Rapide, ArTek, Demeter, CODE,

Modechart, PSDL/CAPS, Resolve, UniCon

5/18/2007 2007, Spencer Rugaber 9

Architectural Evaluation

• Systematic assessment of architecture

properties

• Software Architecture Assessment

Method (SAAM), Architecture Tradeoff

Analysis Method (ATAM)

• Uses

– Impact assessment

– Architecture review board

5/18/2007 2007, Spencer Rugaber 10

SAAM

Generate

Architecture

Generate

Scenarios

Analyze

Individual

Scenarios

Summarize

results

