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Software Architecture
(Informal Definition)

• The organization of a system into 

component subsystems or modules

• Box and Arrow diagrams

• Iteratively refined

• Driven by non-functional requirements

• Often makes use of stereotypical 

architectural styles
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Architecture (USP Definition)
The set of significant decisions about the organization of a 

software system, the selection of the structural elements and 

their interfaces by which the system is composed, together 

with their behavior as specified in the collaborations among 

those elements, the composition of these structural and 

behavioral elements into progressively larger subsystems, 

and the architectural style that guides this organization: these

elements and their interfaces, their collaborations, and their 

composition. Software architecture is concerned not only with 

structure and behavior but with usage, functionality, 

performance, resilience, reuse, comprehensibility, economics 

and technology constraints and trade-offs, and aesthetic 

concerns.
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Representing Architectures

• Component: computational or data element 

plus interface (ports) to the rest of the system

– Requires: what the component needs from the rest 

of the system

– Provides: what the component supplies to the rest 

of the system

• Connector: communication protocols among 

components

• Configuration: components hooked up with 

connectors
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Architectural Styles

• High-level, generic abstractions summarizing 

a related set of design decisions

• Example: client-server

– What are the decisions?

• Benefits

– Encoded experience

– Standards: validation; selection criteria

– Reuse

– Support of process
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Catalog Of Architectural 

Styles

• Master control: hierarchical call and return

• Pipe and filter: one-way, sequential, stdin-

stdout, ASCII streams

• Batch sequential: validate, edit, update cycle

• Implicit invocation: callbacks, registration-

broadcast

• Table-driven interpreter: parse and dispatch
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More Styles

• Client-server: transaction processing, multi-

tiers

• Process control: with feedback loop

• Blackboard: repository, opportunistic control, 

cooperating agents

• Shared memory: with locks for 

synchronization

• Production systems: rule base, conditional 

firing
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And More

• Coroutines: inverted implementation

• Abstract data type: ADT, hide representation

• Layered architecture: abstract machines, 

limited visibility

• State-transition systems: reactive, real-time

• Object-oriented: asynchronous message 

passing, independent threads of control

• Peer-to-peer: equal partners sharing 

responsibility
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Style Issues

• Some systems have more than one style

– Heterogeneous

• Domain-specific software architecture (DSSA)

– Sometimes called reference architecture

• Semantics

• Architecture Description Languages (ADLS)

– Acme, Wright, Rapide, ArTek, Demeter, CODE, 

Modechart, PSDL/CAPS, Resolve, UniCon
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Architectural Evaluation

• Systematic assessment of architecture 

properties

• Software Architecture Assessment 

Method (SAAM), Architecture Tradeoff 

Analysis Method (ATAM)

• Uses

– Impact assessment

– Architecture review board
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SAAM

Generate 

Architecture

Generate 

Scenarios

Analyze

Individual 

Scenarios

Summarize

results


