
6/18/2007  2007, Spencer Rugaber 1

KWIC Exercise

• On a subsequent slide, you will be given the description

of a simple program for which you will be asked to

devise two architectures. For the purposes of this

exercise, you should imagine that it is instead a complex

software system. That is, you should consider how to

divide it into pieces and how the pieces should interact

• The architectures that you devise should be expressed

with box-and-arrow diagrams, as described on the next

slide

• Source: D. Parnas. "On the Criteria to be Used in

Decomposing Systems into Modules." Communications

of the ACM, 15(12):1053-1058, December 1972.

6/18/2007  2007, Spencer Rugaber 2

Box and Arrow Diagrams

• The simplest and most popular way of describing a software

architecture is with a box and arrow diagram

• Each box corresponds to a component. Components can be

active or passive. Active components are units of

computation; that is, they actively compute. Passive

components are data repositories

• Directed lines (arrows) between boxes denote connections

or dependencies. They may use formatting (dashes,

arrowhead styles, etc.) to denote specific types of

interactions. For example, these diagrams often distinguish

between the flow of data and the flow of control

6/18/2007  2007, Spencer Rugaber 3

Key Word in Context (KWIC)

The KWIC index system accepts as input an

ordered set of lines, each line is an ordered set

of words, and each word is an ordered set of

characters. Any line may be “circularly shifted”

by repeatedly removing the first word and

appending it at the end of the line. The KWIC

index system outputs a listing of all circular

shifts of all lines in alphabetical order of the

keyword used to shift the line

– Common (stop) words may be omitted

6/18/2007  2007, Spencer Rugaber 4

Circular Shifts

• Original title

– Gone with the Wind

• Circular shifts (key words underlined)

– Gone with the Wind

– with the Wind Gone

– the Wind Gone with

– Wind Gone with the

• Stop word removal

– Gone with the Wind

– Wind Gone with the

6/18/2007  2007, Spencer Rugaber 5

Example With Multiple Titles

• Gone with the Wind

• War and Remembrances

• The Winds of War

6/18/2007  2007, Spencer Rugaber 6

KWIC Example

Gone with the Wind

and Remembrances War

Winds of War The

War and Remembrances

with the Wind Gone

The Winds of War

6/18/2007  2007, Spencer Rugaber 7

Exercise

• Assume that you had to implement KWIC. Decide how
you would break it into approximately six pieces (even if
you don't think it is big enough to have pieces!)
– Use a box for each piece and give it a label

– Ignore stop-word removal

• Decide how the pieces communicate
– Use a line between two boxes to indicate some form of

communication

– Label the line to indicate the type of communication

• Come up with at least two solutions
– For each, give circumstances when that solution would be

advantageous

6/18/2007  2007, Spencer Rugaber 8

Shared Data Decomposition

• Break into components based on

functions computed

– Also Known As: Functional Decomposition

• All components share access to data in

memory

• Usually contain a master-controller

routine

– Dependencies realized with function calls

6/18/2007  2007, Spencer Rugaber 9

Modules

• Input: reads titles, stores in memory

• Circular shifter: constructs array of

pairs <line index; word index>

• Alphabetizer: batch sorting of circular

shifts

• Output

• Master controller

6/18/2007  2007, Spencer Rugaber 10

Shared Data

6/18/2007  2007, Spencer Rugaber 11

Abstract Data Types (ADT)

Decomposition

• Organization based on data structures

• Representation hiding

• Modules holding data structures also

provide services

• Basis for object orientation

6/18/2007  2007, Spencer Rugaber 12

Modules

• Line: ADT

• Input: reads titles, hands to Line

• Characters: ADT

• Circular shifter: ADT

• Alphabetic Shifts: ADT

– I-th circular shift

• Output

• Master controller

6/18/2007  2007, Spencer Rugaber 13

Abstract Data Type

6/18/2007  2007, Spencer Rugaber 14

Implicit Invocation

• Client modules express interest in state

changes in server modules (registration)

• Server announces changes to all

registered listeners (broadcast)

• Server does not know identity of clients

• Unit of notification is the event

6/18/2007  2007, Spencer Rugaber 15

Modules

• Input of new line

• Update line data structure

• Invoke circular shifter

• Update (second) line data structure

• Invoke alphabetizer

6/18/2007  2007, Spencer Rugaber 16

Implicit Invocation

6/18/2007  2007, Spencer Rugaber 17

Pipe And Filter

• System organized into independent

programs (filters)

• Each filter takes in input (stdin) and

produces output (stdout)

• Filters are connected together via FIFO

queues (pipes)

• Common assumption of sequential files

containing lines of ASCII characters

– Can you think of a non-ASCII example?

6/18/2007  2007, Spencer Rugaber 18

Modules

• Filters for circular shift and alphabetizer

• Pipe connections with files of FIFOs

• No common data storage

6/18/2007  2007, Spencer Rugaber 19

Pipe And Filter

6/18/2007  2007, Spencer Rugaber 20

Evaluation

• Shared data

+

–

• ADT

+

–

• Implicit invocation (active data)

+

–

• Pipe and filter

+

–

6/18/2007  2007, Spencer Rugaber 21

Evaluation

• Shared data

+ Intuitive, efficient access

– Brittle to changes in representation

• ADT

+ Maintainability, reuse

– Performance

• Implicit invocation (active data)

+ Enhancements, data representation changes, reuse

– Difficult to control/think about

• Pipe and filter

+ Intuitive, reuse

– Interactivity, space efficiency

6/18/2007  2007, Spencer Rugaber 22

Exercise Continued

• List at least three possible

enhancements / improvements that

could be made to KWIC

• For each of the four styles (shared data,

ADT, implicit invocation, pipe and filter)

indicate how well it would cope with

each of your changes

– Use the categories (brittle, moderate, easy)

to label your choices

6/18/2007  2007, Spencer Rugaber 23

KWIC Changes

• Input format

• Reuse

• Processing algorithm

– Shift each line as it is read

– Shift lines after all are read

– Shift lines on demand

– Incremental versus batch

sort

• New functionality

– Stop-word elimination

– Interactive line deletion

– Use of external storage

– Performance optimization

• Data representation

– Line storage

– Explicit circular shifts

– Index/offset circular shift

6/18/2007  2007, Spencer Rugaber 24

Lessons

• Hide design decisions, particularly where

representation decisions are concerned:

information hiding

• Organize modules around data

6/18/2007  2007, Spencer Rugaber 25

Quiz
1. Critique the use of UML in describing software architectures? List a set of

desirable characteristics for a software architecture document. For each,

determine whether or not UML provides a suitable means for describing

that characteristic. If so, indicate which UML diagram or diagrams are

appropriate. If not, indicate what alternative you would use.

6/18/2007  2007, Spencer Rugaber 26

Quiz - 2
2. Sketch an algorithm for selecting an architectural style. The input to the

algorithm is a situation, including a systems functional and non-functional

requirements, any existing components or previous versions that are

available, and any other information you deem relevant to making the

choice. Output is the selected style. How would you evaluate the quality

of your algorithm? How would you improve it over time?

6/18/2007  2007, Spencer Rugaber 27

Homework

• Imagine the following scenario. In many publicly accessible area, screens of

various sizes exist capable of displaying computer generated material. Also,

each screen has a communications port capable of receiving display

requests from client devices that are within a limited vicinity of the screen. A

protocol exists by which a client device can communicate with the screen

and request permission to use it. Once permission is granted, the device

may supply content for display. This exercise is concerned with the software

that runs on the screen server that interacts with clients and controls the

display

• List a set of non-functional concerns that must be addressed by the server

software. For each, indicate what sort of computational approach should be

taken to address it

• List and describe a set of server components

• Provide a box-and-arrows diagram description of the system's architecture

• For each connecting line, indicate what kind of connector you would choose

• You may do this exercise alone or in groups of two or three

