
6/18/2007 2007, Spencer Rugaber 1

Case Study

DYNAMO: Automatic

Generation of Invariant

Maintenance Wrappers

Spencer Rugaber

College of Computing

Georgia Institute of Technology

June 20, 2007

6/18/2007 2007, Spencer Rugaber 2

Further Information

• http://www.cc.gatech.edu/dynamo

• Kurt Stirewalt and Spencer Rugaber.

"Automated Invariant Maintenance Via OCL

Compilation."

Lionel C. Briand and Clay Williams, editors,

Model Driven Engineering Languages and

Systems, Springer-Verlag, Lecture Notes in

Computer Science, Number 3713, pp. 616-632,

October 2-7, 2005, Montego Bay, Jamaica.

6/18/2007 2007, Spencer Rugaber 3

Architectural Design Process
• We have talked so far about various

representations that can be used for expressing

architectures

• But we haven't indicated yet what process might

be used to actually perform the design

• The following case study presents one approach

that combines top down and bottom up

techniques

• Note that it makes use of UML to describe

architecture in a way that could be enforced

using metamodel OCL constraints

6/18/2007 2007, Spencer Rugaber 4

Case Study: Text Browser
• Consider the hypothetical situation where you

must solve the following problem:
– You have a source of textual data (Document) with a

file system interface (FileManager)

– You have a resizable viewing window resource
capable of displaying lines of text (ViewPort)

– You have a controlling device like a scrollbar capable
of selecting a discrete value with the position of its
handle and also of giving feedback via the size of the
handle (ScrollBar)

• Objective is to specify the properties of the
TextBrowser, choose an architecture and
assemble the components

6/18/2007 2007, Spencer Rugaber 5

Phase0

• Construct a context diagram for the TextBrowser

• Indicate external actors but only one activity, the

TextBrowser itself

• Indicate external stimuli (events) that can effect

the TextBrowser

• Indicate how the TextBrowser communicates its

results back to the external actors (percepts)

• Specify, in English, the properties you want the

TextBrowser to have

6/18/2007 2007, Spencer Rugaber 6

TextBrowser Properties

• What properties would you expect a

TextBrowser to have?

– What events does it respond to?

– How does the text that is displayed relate to

the file contents?

– What does the size of the ScrollBar handle tell

you?

6/18/2007 2007, Spencer Rugaber 7

Phase 0

6/18/2007 2007, Spencer Rugaber 8

Phase 0 Guarantees

• The ViewPort displays the maximal consecutive

subsequence of complete lines from the Document

that fit within it.

• The position of the top of the ScrollBar handle relative

to the ScrollBar tray reflects the position in the

document of the line currently visible at the top of the

ViewPort. That is, moving the ScrollBar handle allows

different portions of the Document to be displayed.

• The size of the ScrollBar handle with respect to the

size of the ScrollBar tray is equal to the number of

lines visible in the ViewPort compared to the total size

of the Document.

6/18/2007 2007, Spencer Rugaber 9

Phase 1

• Decompose system into components

• Allocate responsibilities (invariant

maintenance)

• Event handling

• Percept delivery

• Property guarantees

• Specification of component properties as

OCL invariants and pre/post conditions

6/18/2007 2007, Spencer Rugaber 10

Phase 1

ScrollBar

+moveHandle(newPosition : int) : void

+handleSize : int

+handlePosition : int

FileManager

+document : sequence(lines)

ViewPort

+resizeWindow(newSize : int) : void

+height : int

+viewContents : sequence(lines)

{context scalesHandle

inv: ScrollBar::handleSize =

 ViewPort::height /

 FileManager::document->size()}

{context displaysDocument

inv: ViewPort::viewContents =

 FileManage::document->

 subseqence(ScrollBar::handlePosition,

 ScrollBar::handlePosition + ViewPort::height - 1)}

{context linesVisible

inv: ViewPort::viewContents->size()=

ViewPort::height.max(FileManager::document->size())}

linesVisible

scalesHandle

displays

Document

{{context

 ScrollBar::moveHandle(newPosition : int):void

 post: handlePosition = newPosition}

}

{context ViewPort::resizeWindow(newSize : int):void

pre: newSize >= 0

post: height = newSize}

6/18/2007 2007, Spencer Rugaber 11

OCL Postcondition Constraint

6/18/2007 2007, Spencer Rugaber 12

OCL Invariant Constraint

{context displaysDocument inv:

ViewPort::viewContents = FileManager.document->

subseqence(ScrollBar::handlePosition,

ScrollBar::handlePosition + ViewPort::height - 1)}

6/18/2007 2007, Spencer Rugaber 13

Phase 2

• Choose an architectural style

– For example, layered, implicit invocation

• Assign components to layers

– Typically user events are at the bottom;

percepts are at the top

• Determine dependencies

• Update OCL

– Constructive/applicative format (single

variable on the left hand side

6/18/2007 2007, Spencer Rugaber 14

Phase 2

6/18/2007 2007, Spencer Rugaber 15

Updated OCL
• context ScrollBar::moveHandle(newPosition : int): void

post : handlePosition = newPosition

• context ViewPort::resizeWindow(newSize : int) :void

pre : newSize >= 0

post : height = newSize

• context displaysDocument inv:

ViewPort::viewContents =

FileManager::document->subsequence(ScrollBar::handlePosition,

ScrollBar::handlePosition + ViewPort::height - 1)

• context scalesHandle inv:

ScrollBar::handleSize =

ViewPort::height / FileManager::document->size()

• context linesVisible inv:

ViewPort::viewContents->size() =

ViewPort::height.max(FileManager::document->size())

6/18/2007 2007, Spencer Rugaber 16

Layered, Implicit-Invocation

Architecture

• Layering: Component composition in which lower-level components

are unaware of how they are being used by upper-level components

– Lower layers handle external events, propagating status changes

upward

• Propagation is implicit--event announcement is made without the

source component knowing the recipient; reduces coupling

– Upper layers receive notifications, prepare and present results

• Benefits

– Improved reusability: because lower-level components do not depend

upon upper-level components

– Reduced complexity: because of fewer allowed interactions among

components

• Cost: Overhead due to the extra levels of indirection

6/18/2007 2007, Spencer Rugaber 17

Aside: Implementation Approach

• Status change initiated by external event

• Recipient component has assignments to

its (status) variables overridden

• Overriding code notifies dependent

components

• Code to do this generated automatically

from OCL model

• C++ operator overload plus template mixin

wrappers

6/18/2007 2007, Spencer Rugaber 18

Aside:

TextBrowser Product Family

• FileManager: source of data

– Static or streaming

– Supplies contents to Viewport for viewing

• ViewPort: information visualization

– Text or statistics

– Resizable display of file contents

• ScrollBar: controller

– Scrolling or textField

– Controls portion of file to be displayed

6/18/2007 2007, Spencer Rugaber 19

Aside: Alternative Invariant

Maintenance Mechanisms

• Distributed

– Each component knows about dependent components and

invokes them when its state changes

• Aggregated

– Single component responsible for handling all external events

and delegating handling to subordinates

• Mediators

– Special class whose instances are responsible for handling

invariants; knows about independent and dependent participants

6/18/2007 2007, Spencer Rugaber 20

Invariant Maintenance

Strategies

• The key design issue is deciding which class
is responsible for ensuring the invariant

• As an example, consider the following
situation. There are three objects: a file, a
viewing window and a scrollbar. There is a
constraint that says that the viewing window
displays the part of the file contents that
occurs at the position in the file that
corresponds to the position of the scrollbar
handle in the scrollbar tray

6/18/2007 2007, Spencer Rugaber 21

Example Continued

• If the user moves the scrollbar handle, the

invariant is temporarily broken, because

the displayed lines no longer represent

those that exist at the requested portion of

the file

• The next four slides give four strategies for

reestablishing the invariant

6/18/2007 2007, Spencer Rugaber 22

AGGREGATION

• One of the objects (say the viewing window) owns
(has as pointers or instance variables) the other two

• The scrollbar change request first comes to the
owning instance (the viewing window) and gets
delegated to the scrollbar, which returns a new
position

• The viewing window then determines that it needs
additional content in order to satisfy its
responsibilities

• It makes a request to the file for the required lines
and then displays them

• That is, the viewing window had aggregated the
responsibility for the invariant maintenance

6/18/2007 2007, Spencer Rugaber 23

Distributed

• The scrollbar receives the change request and determines the

new value (relative position in the scrollbar tray)

• It also knows that the viewing window depends on this

information, so it makes a method call, passing the relative

position

• The viewing window compares the relative position it received to

the current value associated with the top displayed line and

realizes that it cannot satisfy its responsibility

• It formulates a request to the file for the additional lines and

sends a message to the file object

• The file object returns the lines to the viewing window for display

• That is, knowledge of the invariant is distributed among three

objects that delegate partial responsibility to each other

6/18/2007 2007, Spencer Rugaber 24

Mediators

• A new object is introduced of class Mediator

• Each instance of Mediator is responsible for one constraint and

know of its dependent objects

• The dependent objects know only that they must inform the
Mediator when their attributes change value

• When the scrollbar is adjusted, it alerts the Mediator, which, in

turn, requests the new position from the scrollbar

• The Mediator realizes that new content is required from the file,

requests it, and passes it to the viewing window

• That is, the Mediator has knowledge and responsibility for

invariant maintenance. The Mediator is an example of a design

pattern

6/18/2007 2007, Spencer Rugaber 25

Mode Components
(Stirewalt and Rugaber)

• Attributes mentioned in invariants are called status variables

and are implemented in such a way that when they change, any

other dependent objects are transparently notified

– C++ assignment override

• Invariant update code is compiled into a wrapper on the

dependent object

– Neither the independent nor dependent object is aware of the

update (as far as code changes go). This is sometimes called

implicit invocation

• That is, invariant update is handled by specially compiling the

OCL constraint

• Wrappers and listeners/observers (implementation of implicit

invocation) are further examples of design patterns

6/18/2007 2007, Spencer Rugaber 26

Using UML for Architectural

Modeling

• Motivations

– Accessibility

– Use of UML tools

– Compatibility with design models

– Standardization

6/18/2007 2007, Spencer Rugaber 27

Future Work

DYNAMO Interpretation of UML

AssemblyModel

LayerPackage

InvariantAssociation

EventDependency

PerceptAttribute

ComponentClass

InterpretationUML Concept

• Suggests defining UML profile (stereotypes and meta-model constraints)

6/18/2007 2007, Spencer Rugaber 28

Requirements

• Focus on structural concerns

• Stylistic issues

• Behavioral

• Component interaction paradigms

• Constraints

6/18/2007 2007, Spencer Rugaber 29

UML MetaModel (Partial)

6/18/2007 2007, Spencer Rugaber 30

Assumption

• Tools exist to check the application of OCL

constraints to UML models

• Includes ability to annotate and check the

UML Meta Model

• Poseidon (http://gentleware.com/index.php)

• Octopus

(http://www.klasse.nl/octopus/index.html)

6/18/2007 2007, Spencer Rugaber 31

Approach

• Determine modeling vocabulary

• Define a new stereotype for each term

• Compose OCL metamodel constraints to

express participation of vocabulary in models

– Only properly stereotyped elements can participate

– Counts must be correct

– Type checking rules

– Express style rules as appropriate

• e.g. directionality of data or control flows

• Consider adding tagged values to annotate new

model type {profile}

