
5/18/2007  2007, Spencer Rugaber 1

Acme

• Architectural interchange language

– http://www.cs.cmu.edu/~acme/docs/

• CMU and ISI

• Extensible

• Tool support

– AcmeStudio - Graphical editor

– AcmeLib - API (Java, C++)

– AcmeWeb - document generator

5/18/2007  2007, Spencer Rugaber 2

Features

• Architecture ontology

– Semantic elements of the language

• Extension mechanism (properties)

– Supports externally defined sublanguages

• Type mechanism

– For defining common elements and styles

• Open semantic framework

– To support automated reasoning

5/18/2007  2007, Spencer Rugaber 3

Ontology

• Components

– Computational elements and data stores

• Connectors

– Communication and coordination

• Ports

– Component interfaces possibly including protocols

• Roles

– Connector interfaces

• Systems

– Configurations of components and connectors

– Specified via attachments

• Representations

– For hierarchical decomposition and multiple views

• Rep-maps

– Specifies correspondence between levels of refinement

5/18/2007  2007, Spencer Rugaber 4

Example

System simple_cs = {
Component client = {Port send-request;};
Component server = {Port receive-request;};
Connector rpc = {Roles {caller, callee}};
Attachments {
client.send-request to rpc.caller;
server.receive-request to rpc.callee;

}

}

5/18/2007  2007, Spencer Rugaber 5

Representations

• Explicit way of indicating structural

refinement

• Element may have more than one

representation

– Different views

– Alternative decompositions

• Parent element acts as a signature

• What properties must a refinement have in

order to adequately express its parent?

5/18/2007  2007, Spencer Rugaber 6

Rep-Map

• Rep-Map (abstraction map) associates abstract

component description with the detailed

representation

– Binding list mechanism for representing this

abstraction

– For example, component binding provides a way of

associating a port on a component with some port

within the representation

• Note that Acme does not define the precise

nature of the relationship between an "outer"

and an "inner" port/role

5/18/2007  2007, Spencer Rugaber 7

Example Representation
Component theComponent = {

Port easyRequests;

Port hardRequests;

Representation {

System details = {

Component fastButDumbComponent = { Port p; };

Component slowButSmartComponent = { Port p; };

};

Bindings {

easyRequests to fastButDumbComponent.p;

hardRequests to slowButSmartComponent.p

};

};

};

5/18/2007  2007, Spencer Rugaber 8

Properties
• Extension mechanism for ADL-specific tools

• Parsed but uninterpreted by Acme itself

• Example uses

– Data types on ports/roles

– Interaction protocols

– Scheduling constraints

– Resource consumption

• Property sublanguages

– Visualization properties

• For tools displaying architectural views

– Temporal constraints

5/18/2007  2007, Spencer Rugaber 9

Properties

Example

System simple_cs = {

Component client = {

Port send-request:

Properties { Aesop-style : style-id = client-server;

UniCon-style : style-id = cs;

source-code : external = "CODE-LIB/client.c"}}

Component server = {

Port receive-request:

Properties { idempotence: boolean = true;

max-concurrent-clients : integer = 1;

source-code : external = "CODE-LIB/server.c"}}

Connector rpc = {

Roles {caller, callee}

Properties { synchronize : boolean = true;

max-roles : integer = 2;

protocol : Wright = "…"}}

Attachments {

client.send-request to rpc.caller;

server.receive-request to rpc.callee}

}

5/18/2007  2007, Spencer Rugaber 10

Other Acme Features

• Semantic framework

– Conversion of Acme models into predicates

• Types

– For checking and abstraction (Families)

• Generics

5/18/2007  2007, Spencer Rugaber 11

Semantic Framework

• Ability to formally reason about Acme descriptions

exists client, server, rpc |

component(client) ^

component(server) ^

connector(rpc) ^

attached(client.send-

request,rpc.caller) ^

attached(server.receive-

request,rpc.callee)

5/18/2007  2007, Spencer Rugaber 12

Family

• A family provides a way of describing a set

of similar architectures

– Architectural style

• Element types that make up the

vocabulary of the family

• Set of rules encoded as properties, for

using the family

5/18/2007  2007, Spencer Rugaber 13

Example Family

Family PipesAndFiltersFam = {

Component Type FilterT = {};

Connector Type PipeT = {};

};

System APFSystem : PipesAndFiltersFam = {

Component filter1 : FilterT =

new FilterT; Component filter2:

FilterT = new FilterT;

Connector pipe : PipeT = new PipeT; ...

};

5/18/2007  2007, Spencer Rugaber 14

Modeling Steps

• Identify concepts that map to Acme

– System, components, connectors, ports, role,

representation

• Define property types and use them to

augment the System description

• If appropriate define and use a family

aggregating those types

5/18/2007  2007, Spencer Rugaber 15

Acme Limitations

• No model for behavior

• No model for functional properties

• No direct way of mapping to code

• In general, no semantics at all

