
1

HCI-Conscious Software Architecture
Gregory D. Abowd, Professor
School of Interactive Computing

Agenda

9:00-10:30 Intro to HCI and UI tools
10:30-10:45 Break
10:45-12:15 Usability and Software Architectures

(Part 1)
12:15-1:15 Lunch
1:15-2:45 Usability and Software Architectures

(Part 2)
2:45-3:00 Break
3:00-4:30 End-User Implications of Infrastructure
4:30-5:00 Homework discussion

Introductions

Instructor

Gregory AY - bowd

HCI

Software Engineering

Ubiquitous Computing

2

What is HCI?

Human-Computer Interaction: The study of people and
computing technology and the way they influence
each other

The 3 U’s...

Utility (Usefulness), Usability, Ubiquity

Goals of this Course

• Introduction to history of implementation support for
interactive systems
– Dix, Finlay, Abowd & Beale (2004) Human-Computer Interaction.

Chapter 8.

• Usability Architectural Patterns: how to trace architectural
impact of “usability modifications”
– John, B. E., Bass, L. J., Sanchez-Segura, M-I. & Adams, R. J. (2004)

Bringing usability concerns to the design of software architecture.
Proceedings of EHCI and the 11th International Workshop on
Design, Specification and Verification of Interactive Systems,
(Hamburg, Germany, July 11-13, 2004).

• End-user implications of middleware infrastructure
– Edwards, W. K., Bellotti, V., Dey, A. K., and Newman, M. W. 2003. The

challenges of user-centered design and evaluation for infrastructure.
In Proceedings of the CHI 2003 (Ft. Lauderdale, Florida, pp. 297-
304.

History of UI Implementation Support

Programming tools provide layers of services for programmers

• windowing systems
– core support for separate and simultaneous user-system activity

• programming the application and control of dialogue
• interaction toolkits

– bring programming closer to level of user perception

• user interface management systems
– controls relationship between presentation and functionality

3

Introduction

How does HCI affect the programmer?

Advances in coding have elevated programming
hardware specific

→ interaction-technique specific

Layers of development tools
– windowing systems
– interaction toolkits
– user interface management systems

Elements of windowing systems

Device independence
programming the abstract terminal device drivers
image models for output and (partially) input

• pixels
• PostScript (MacOS X, NextStep)
• Graphical Kernel System (GKS)
• Programmers' Hierarchical Interface to Graphics (PHIGS)

Resource sharing
achieving simultaneity of user tasks
window system supports independent processes
isolation of individual applications

roles of a windowing system

4

Architectures of windowing systems

three possible software architectures
– all assume device driver is separate
– differ in how multiple application management is implemented

1. each application manages all processes
– everyone worries about synchronization
– reduces portability of applications

2. management role within kernel of operating system
– applications tied to operating system

3. management role as separate application
maximum portability

The client-server architecture

X Windows architecture

5

X Windows architecture (ctd)

• pixel imaging model with some pointing mechanism

• X protocol defines server-client communication

• separate window manager client enforces policies for
input/output:
– how to change input focus

– tiled vs. overlapping windows

– inter-client data transfer

Programming the application

read-evaluation loop

repeat
read-event(myevent)
case myevent.type

type_1:
do type_1 processing

type_2:
do type_2 processing

...
type_n:

do type_n processing
end case

end repeat

Programming the application

notification-based
void main(String[] args) {

Menu menu = new Menu();
menu.setOption(“Save”);
menu.setOption(“Quit”);
menu.setAction(“Save”,mySave)
menu.setAction(“Quit”,myQuit)

...
}

int mySave(Event e) {
// save the current file

}

int myQuit(Event e) {
// close down

}

6

going with the grain

System style affects the interfaces
– modal dialogue box

• easy with event-loop (just have extra read-event loop)
• hard with notification (need lots of mode flags)

– non-modal dialogue box
• hard with event-loop (very complicated main loop)
• easy with notification (just add extra handler)

beware!

if you don’t explicitly design it will just happen
implementation should not drive design

Using toolkits

Interaction objects
– input and output

intrinsically linked

Toolkits provide this level of abstraction
– programming with interaction objects (or
– techniques, widgets, gadgets)
– promote consistency and generalizability
– through similar look and feel
– amenable to object-oriented programming

move press release move

User Interface Management Systems
(UIMS)
• UIMS add another level above toolkits

– toolkits too difficult for non-programmers

• concerns of UIMS
– conceptual architecture
– implementation techniques
– support infrastructure

• non-UIMS terms:
– UI development system (UIDS)
– UI development environment (UIDE)

• e.g. Visual Basic

7

UIMS as conceptual architecture

• separation between application semantics and presentation

• improves:
– portability – runs on different systems

– reusability – components reused cutting costs

– multiple interfaces – accessing same functionality

– customizability – by designer and user

UIMS tradition – interface layers /
logical components

• linguistic: lexical/syntactic/semantic

• Seeheim:

• Arch/Slinky

presentation dialogue application

dialogue

lexical

physical
functional

core

func. core
adaptor

Seeheim model

Presentation Dialogue
Control

Functionality
(application
interface)

USERUSER APPLICATION

switch

lexical syntactic semantic

8

conceptual vs. implementation

Seeheim
– arose out of implementation experience

– but principal contribution is conceptual

– concepts part of ‘normal’ UI language

 … because of Seeheim …
… we think differently!

e.g. the lower box, the switch

• needed for implementation
• but not conceptual

presentation dialogue application

semantic feedback

• different kinds of feedback:
– lexical – movement of mouse

– syntactic – menu highlights

– semantic – sum of numbers changes

• semantic feedback often slower
– use rapid lexical/syntactic feedback

• but may need rapid semantic feedback
– freehand drawing

– highlight trash can or folder when file dragged

what’s this?

USER

Lexical Syntactic Semantic

APPLICATION
Application

Interface
Model

Dialogue
ControlPresentation

9

the bypass/switch

USER

Lexical Syntactic Semantic

APPLICATION
Application

Interface
Model

Dialogue
ControlPresentation

rapid semantic
feedback

direct communication
between application

and presentation

but regulated by
dialogue control

Arch/Slinky

• more layers! – distinguishes lexical/physical

• like a ‘slinky’ spring different layers may be thicker (more
important) in different systems

• or in different components

dialogue

lexical

physical
functional

core

func. core
adaptor

monolithic vs. components

• Seeheim has big components

• often easier to use smaller ones
– esp. if using object-oriented toolkits

• Smalltalk used MVC – model–view–controller
– model – internal logical state of component

– view – how it is rendered on screen

– controller – processes user input

10

MVC
model - view - controller

model

view

controller

MVC issues

• MVC is largely pipeline model:
 input → control → model → view → output

• but in graphical interface
– input only has meaning in relation to output

 e.g. mouse click
– need to know what was clicked

– controller has to decide what to do with click

– but view knows what is shown where!

• in practice controller ‘talks’ to view
– separation not complete

PAC model

• PAC model closer to Seeheim
– abstraction – logical state of component
– presentation – manages input and output
– control – mediates between them

• manages hierarchy and multiple views
– control part of PAC objects communicate

• PAC cleaner in many ways …
but MVC used more in practice
 (e.g. Java Swing)

11

PAC
presentation - abstraction - control

abstraction presentation

control

A P
C

A P
C

A P
C A P

C

The drift of dialogue control

• internal control
(e.g., read-evaluation loop)

• external control
(independent of application semantics or presentation)

• presentation control
(e.g., graphical specification)

Summary

Levels of programming support tools
• Windowing systems

– device independence
– multiple tasks

• Paradigms for programming the application
– read-evaluation loop
– notification-based

• Toolkits
– programming interaction objects

• UIMS
– conceptual architectures for separation
– techniques for expressing dialogue

12

Agenda

9:00-10:30 Intro to HCI and UI tools
10:30-10:45 Break
10:45-12:15 Usability and Software Architectures

(Part 1)
12:15-1:15 Lunch
1:15-2:45 Usability and Software Architectures

(Part 2)
2:45-3:00 Break
3:00-4:30 End-User Implications of Infrastructure
4:30-5:00 Homework discussion

Source

These materials adapted from Usability and Software
Architecture research at Carnegie Mellon School of
Computer Science & Software Engineering Institute
http://www.cs.cmu.edu/~bej/usa/index.html

Specifically, tutorials on Usability-Supporting Architectural
Patterns by Bonnie John, Len Bass, Natalia Juristo and
Maribel Sanchez-Segura

6 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 6

Tutorial objectives: The scene
The usability analyses or user test data are in; the

development team is poised to respond. The software had
been carefully modularized so that modifications to the UI

would be fast and easy. When the usability problems are
presented, someone around the table exclaims, “Oh, no,

we can’t change THAT!”

7 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 7

Tutorial objectives: The scene
The usability analyses or user test data are in; the

development team is poised to respond. The software had
been carefully modularized so that modifications to the UI

would be fast and easy. When the usability problems are
presented, someone around the table exclaims, “Oh, no,

we can’t change THAT!”

The requested modification, feature, functionality, reaches

too far in to the architecture of the system to allow

economically viable and timely changes to be made.

• Even when the functionality is right,

• Even when the UI is separated from that functionality,

• Architectural decisions made early in development can

preclude the implementation of a usable system.

8 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 8

Tutorial objectives:

• Understand basic principles of software architecture for
interactive systems and its relationship to the usability of

that system
• Be able to evaluate whether common usability scenarios

will arise in the systems you are developing and what
implications these usability scenarios have for software

architecture design

• Understand patterns of software architecture that
facilitate usability, and recognize architectural decisions

that preclude usability of the end-product, so that you
can effectively bring usability considerations into early

architectural design.

9 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 9

What is Software Architecture?

Enumeration of all major software components

Each component has enumeration of responsibilities

Interaction among components specified
• Control and data flow
• Sequencing information
• Protocols of interaction
• Allocation to hardware

There are many ways to document this information
(Clements, et. al. 2003)

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,

Nord, R., & Stafford J., (2003) Documenting Software Architectures:

Views and Beyond, Addison Wesley.

10 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 10

Purposes of Software
Architecture
Communication among stakeholders
• An educational purpose

• A managerial purpose

Artifact for analysis
• Embeds early design decisions

Set of blueprints for implementation

11 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 11

What does usability mean?

As many definitions as there are authors!

What’s important depends on context of use

Some commonly-seen aspects
• efficiency of use
• time to learn to use efficiently
• support for exploration and problem-solving
• user satisfaction (e.g., trust, pleasure, acceptance by

discretionary users)

Our concern is which of these can be influenced by
architectural decisions

12 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 12

A usability benefits hierarchy

Increases individual user effectiveness
• Expedites routine performance

- Accelerates error-free portion of routine performance
- Reduces the impact of routine user errors (slips)

• Improves non-routine performance
- Supports problem-solving
- Facilitates learning

• Reduces the impact of user errors caused by lack of
knowledge (mistakes)
- Prevents mistakes
- Accommodates mistakes

Reduces the impact of system errors
• Prevents system errors
• Tolerates system errors

Increases user confidence and comfort

13 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 13

Activities in software
development

System Test and Deployment

Implementation

Detailed Design

Architecture Design

Requirements

System Formulation

14 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 14

Activities in software
development + HCI techniques

System Test and Deployment - HCI techniques:

User testing in the field, Log analysis, etc.

Implementation - HCI techniques:

UI Toolkits

Detailed Design - HCI techniques:

Heuristic Evaluation, Cognitive Walkthrough, GOMS, PICTIVE,

Rapid prototyping+user testing, etc.

Architecture Design - HCI techniques:

What we’ll learn today

Requirements - HCI techniques:

Interviewing, questionnaires, Contextual Inquiry

System Formulation - HCI techniques:

Interviewing, questionnaires, Contextual Inquiry

15 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 15

Detailed Design - Common
Practice for Interactive Systems

System Test and Deployment - HCI techniques:

Think-aloud Usability Testing, Log analysis, etc.

Implementation - HCI techniques:

UI Toolkits

Detailed Design - HCI techniques:

Heuristic Evaluation, Cognitive Walkthrough, GOMS, PICTIVE,

Rapid prototyping+user testing, etc.

Architecture Design - HCI techniques:

What we’ll learn today

Requirements - HCI techniques:

Interviewing, questionnaires, Contextual Inquiry

System Formulation - HCI techniques:

Interviewing, questionnaires, Contextual Inquiry

16 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 16

Detailed Design - Common
Practice for Interactive Systems
The HCI techniques supporting detailed design of the user
interface are all based on iterative design

• i.e.,design, test (analyze or measure),
change, and re-test.

Once software has been designed, iteration implies

change.

Software engineers plan for change through isolating

section to be changed (separation).

In detailed design, the items to be separated are those

relating to presentation, input, possibly dialog.

17 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 17

Separation Based Architectural
Patterns for Usability

Presentation-Abstraction-Control (PAC)
• Developed in 1980s by group at the University of

Grenoble
• Reaction to shortcomings of Smalltalk Model-View-

Controller (MVC)

J2EE Model-View-Controller (J2EE MVC)

• Developed by Sun to support J2EE
• Adaptation of Smalltalk MVC to web environment

Separation based patterns are commonly used in practice

and have proven quite successful

PAC is documented in:

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M.,

(1996) Pattern-Oriented Software Architecture, A System of Patterns,

Chichester, Eng: John Wiley and Sons.

J2EE-MVC is documented at http://java.sun.com/blueprints/patterns/MVC-

detailed.html

18 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 18

Presentation-Abstraction-Control
(PAC)
Hierarchical series of agents
• Top-level agent provides functional core
• Bottom level agents are self contained semantic concepts such

as spread sheets or forms.
• Intermediate level agents act as intermediaries between top level

and bottom level agents and determines which bottom level
agents are active.

Each agent has three portions:
• Presentation - Input/output manager (unlikely to occur

except in bottom level)
• Abstraction - Application functionality
• Control - Mediator between Presentation & Abstraction

and communicator to controls at other levels

19 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 19

Output
device

Input device

Presentation-Abstraction-Control (PAC)

AbstractionPresentation

Controller
Functional Core

(presentation

unlikely)

Intermediaries

(presentation

unlikely)

Self contained
semantic
concepts

AbstractionPresentation

Controller

AbstractionPresentation

Controller

AbstractionPresentation

Controller

AbstractionPresentation

Controller

20 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 20

J2EE Model-View-Controller

Object-oriented

Model - Application state and functionality

View - Renders models, sends user gestures to

Controller

Controller - Updates model, selects view, defines application

behavior

Differences from PAC

• Separates management of the input from the output

• View updates itself directly from the model

• PAC hierarchical concept managed outside of J2EE-MVC

21 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 21

J2EE Model-View-Controller

Output
device

Input device

Command
Processor

Command
Processor

Model
Command

Processor

Command
Processor

View

Command
Processor

Command

Processor

Controller

22 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 22

Software architectural patterns
PAC and J2EE MVC are “software architectural patterns”
(Buschmann, et. al., 1996)

Independent of application

Provides some indication of assignment of responsibilities to
components

Much left unspecified:
• Allocation to processes
• Synchronous/asynchronous communication
• Decomposition of components
• Class structure
• Other responsibilities of components
• Exceptions

Sufficient to give overall guidance for design approach

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M.,

(1996) Pattern-Oriented Software Architecture, A System of Patterns,

Chichester, Eng: John Wiley and Sons.

23 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 23

Software architectural patterns - 2

Patterns community has a variety of styles and levels of
detail for writing about patterns

• Buschmann, et. al., (1996) provide prose descriptions,
architecture-level diagrams, and sample code.

• Gamma, et. al., (1995) provide prose descriptions, class
diagrams, and code samples

• Hillside Group advocates mainly prose and emphasizes

pattern languages above individual patterns

Buschmann, F., Meuneir, R, Rohnert, H., Sommerlad, P. and Stal, M.,

(1996) Pattern-Oriented Software Architecture, A System of Patterns,

Chichester, Eng: John Wiley and Sons.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns.

Boston, Massachusetts: Addison-Wesley.

Information about the Hillside Group and patterns and pattern languages can

be found at http://www.hillside.net/

24 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 24

Why separation-based
architectural patterns are not
sufficient for interactive systems

Remember iterative design?

25 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 25

How does J2EE MVC support
iterative design?
Change color of font
• Modify only View

- View contains all display logic; font changes only
require modifying the display

Change order of dialogs

• Modify only Controller

- Controller defines the presentation flow, so changing
dialog order involves modifying the controller logic

26 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 26

What happens to other usability
changes?
Add the ability to cancel a long-running command
• Requires modification of all three modules

- View – must have cancel button or other means for
user to specify cancel

- Controller – logic to respond to the View’s menu
selection and execute the appropriate Model function

- Model – free allocated resources, etc.

27 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 27

Shortcomings of separation
patterns for solving the “We can’t
change THAT!” problem
With respect to adding the ability to cancel

• Involved all components

• Not much localization

• If requirement for cancel discovered late, then will
require extensive modification to the architecture.

29 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 29

Beyond separation-based
architectural patterns
Our goal is to provide software designers and usability
specialist tools to recognize and prevent common usability
problems that are not supported by separation.

We are doing this by:
• Identifying those aspects of usability that are

“architecturally sensitive” and embodying them in small
scenarios

• Providing a way to reason about the forces acting on
architecture design in these scenarios

• Providing checklist of important software responsibilities
and possible architecture patterns to satisfy these
scenarios

30 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 30

What does architecturally-
sensitive mean?
A scenario is architecturally-sensitive if it is difficult to add
the scenario to a system after the architecture has been
designed.

Solution may:
• Insure that multiple components interact in particular

ways
• Insure that related information and actions can be found

in a single component and easily changed

Separation patterns intended to localize changes to
presentation. Therefore,
• Changing color of font – NOT architecturally-sensitive
• Adding cancellation – IS architecturally-sensitive

31 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 31

An architecturally-sensitive scenario:
Canceling commands

The user issues a command then changes his or her mind,
wanting to stop the operation and return the software to its

pre-operation state. It doesn’t matter why the user wants to
stop; he or she could have made a mistake, the system

could be unresponsive, or the environment could have

changed.

32 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 32

What other architecturally-
sensitive scenarios can you think
of?

33 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 33

Here are some others we have thought of
Aggregating Data
Aggregating Commands
Alert
Canceling Commands
Checking for Correctness
Evaluating the System
Form/Field Validation
History Logging
Maintaining Device Independence

(Different Access Methods)
Maintaining Compatibility with

Other Systems
Making Views Accessible
Modifying Interfaces
Navigating Within a Single View
Observing System State
Operating Consistently Across

Views
Providing Good Help

(Context-Sensitive Help)
Predicting Task Duration
Recovering from Failure

Reusing Information
Retrieving Forgotten Passwords
Shortcuts
Status indication
Supporting Comprehensive

Searching
Supporting International Use

(Different Languages)
Supporting Multiple Activities
Supporting Personalization

(User Profile)
Supporting Undo
Supporting Visualization
Tour
Using Applications Concurrently

(Multi-Tasking)
Verifying Resources
Wizard
Workflow model
Working at the User’s Pace
Working in an Unfamiliar Context

This list of architecturally-sensitive usability scnearios is compiled from

Bass, L., John, B. E., & Kates, J. (2001). Achieving usability through

software architecture (CMU/SEI-2001-TR-005). Pittsburgh, PA:

Software Engineering Institute.

http://www.sei.cmu.edu/publications/documents/01.re

ports/01tr005.html

And

Juristo , N., Moreno, A. M., & Sanchez, M. (2003) Deliverable D.3.4.

Techniques, patterns and styles for architecture- level usability improvement. -

ESPRIT project (IST-2001-32298)

http://www.ls.fi.upm.es/status/results/deliverables.html

34 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 34

Need more than just architecturally
sensitive scenario

Architecturally sensitive scenarios are potential
requirements for a particular system to support usability

Need

• to determine whether the benefit of supporting the
scenario outweighs the cost

• to provide guidance to the development team as to the

issues associated with implementing a solution

35 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 35

User’s Organizational Setting

Task in an Environment

System

Fo
rc
es

Forces

B
e
n

e
fi

ts

Systems exist in a context

36 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 36

Context for computer system

Computer systems fulfill “business” goals
• “Business goals” could be mission, academic,

entertainment, etc.
• User using the system creates certain benefits for the

“organization” that created it
• Creating system has costs.

Cost/Benefit
• Implementation support for total scenario
• Implementation support for pieces of the scenario

But more detail is necessary to be able to understand
cost/benefit and implications of implementation

37 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 37

User«s Organizational Settings

Task in an Environment

Forces

System

Users

Human

desires and

capabilities

Software

Benefits

realized

when the
solution is

provided

State of the

software

General

responsibilities

Specific Solution (more

detail): e.g., architecture,

software tactics

Forces

Forces

Forces

Previous

design

decisions

Forces
Benefits

Forces acting on architecture design

38 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 38

Reasoning about architecture
design
Differing forces motivate particular aspects of solution.

Forces come from three sources:
• Task and environment in which user is operating.

- E.g., Cancel is only useful if operation is long running.
• Human desires and capabilities.

- E.g., User makes mistakes, Cancel allows one type of

correction of mistake.
• State of the software.

- E.g., Networks fail. Giving the user the ability to
cancel may prevent the user from being blocked

because of this failure.

39 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 39

Architecture Design

Many different methods for satisfying a particular scenario.

Most systems use separation based architectural pattern as
a basis for overall design of system.

We provide two different solutions:

• General solution – responsibilities of the software that

must be fulfilled by any solution
• Specific solution. An architectural pattern that shows how

to implement the general solution in the context of a
separation based pattern. For example, we’ll assume

J2EE-MVC as an overarching separation based pattern.

40 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 40

Software Architectural Patterns

We have given you two examples of architectural patterns
(PAC and J2EE-MVC)

These are examples of the solution portion of an

architectural pattern

The patterns community has developed a set of common

concepts that should be included in descriptions of a
pattern.

We embody these concepts in Usability-Supporting

Architectural Patterns (USAPs)

41 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 41

Usability-Supporting Architectural
Patterns - 1

Context
• Situation – architecturally sensitive usability scenarios

• Conditions – constraints on when the situation is relevant
• Usability benefits – enumeration of benefits to the user

from supporting this scenario

Problem - Forces in conflict

• Forces exerted by the task and environment
• Forces exerted by human desires and capabilities

• Forces exerted by the state of the software when the
user wishes to apply the architecturally sensitive usability

scenario

42 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 42

Usability-Supporting Architectural
Patterns - 2

General solution – set of responsibilities that any solution to
situation must satisfy

Specific solution – architectural pattern to solve situation

assuming an overarching separation based pattern
• In our slides, we’ll assume J2EE-MVC

43 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 43

USAP Context template

Potential Usability Benefits: A brief description of the benefits to

the user if the solution is implemented. We use the usability benefit

hierarchy given earlier

Conditions on the Situation: Any conditions on the situation

constraining when the pattern is useful

Situation: A brief description of the situation from the user’s

perspective that makes this pattern useful

44 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 44

USAP Context for Cancel - 1

Conditions on the Situation: A user is working in a system where

the software has long-running commands, i.e., more than one

second.

The cancellation command could be explicitly issued by the user,

or through some sensing of the environment (e.g., a child’s hand in

a power car window).

Situation: The user issues a command then changes his or her

mind, wanting to stop the operation and return the software to its

pre-operation state. It doesn’t matter why the user wants to stop;

he or she could have made a mistake, the system could be

unresponsive, or the environment could have changed.

45 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 45

Benefits of Cancel - 1

Potential Usability Benefits:

A. Increases individual user effectiveness

A.1 Expedites routine performance

A.1.2 Reduces the impact of routine user errors (slips) by

allowing users to revoke accidental commands and return to

their task faster than waiting for the erroneous command to

complete.

A.2 Improves non-routine performance

A.2.1 Supports problem-solving by allowing users to apply

commands and explore without fear, because they can

always abort their actions.

46 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 46

Benefits of Cancel – 2

Potential Usability Benefits:

A. Increases individual user effectiveness

A.3 Reduces the impact of user errors caused by lack of

knowledge (mistakes)

A.3.2 Accommodates mistakes by allowing users to abort

commands they invoke through lack of knowledge and

return to their task faster than waiting for the erroneous

command to complete.

B. Reduces the impact of system errors

B.2 Tolerates system errors by allowing users to abort

commands that aren’t working properly (for example, a user

cancels a download because the network is jammed).

C.Increases user confidence and comfort by allowing users to

perform without fear because they can always abort their

actions.

47 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 47

Cost/Benefit

There is a cost to implementing cancel. The software
engineer can calculate this.

There is a benefit to the organization (as we explained)
from implementing cancel.
• Benefit to current user immediately from recovered time
• Benefit to current user later from cleaning up local

resources so system will not subsequently crash
• Benefit to other users from cleaning up shared

resources.

Development team (or project manager) can do cost/benefit
analysis to determine whether to implement cancel.

48 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 48

First row of problem/general solution
template always scenario

The first row provides the rationale for the scenario in terms
of the forces.

This enables the development team to decide whether to

implement the scenario at all.

It may be that forces are not applicable to current

development.

It may also be that forces cause consideration of scenario
when it may be have been overlooked.

49 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 49

USAP Problem/General Solution
Template

Responsibilities

of the general

solution that

resolve the forces

in the row.

Forces

exerted by

the state of

the software .

Each row

contains a

different force.

Forces

exerted by

human

desires and

capabilities.

Each row

contains a

different

force.

Forces

exerted by the

environment

and the task.

Each row

contains a

different force

General

Solution
Problem

50 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 50

Cancel Problem/General Solution:
Responsibility R1 is essentially the
scenario itself

R1.

Must provide

a means to

cancel a

command

Software is

sometimes

unresponsive

Users slip or

make mistakes,

or explore

commands and

then change

their minds, but

do not want to

wait for the

command to

complete.

Networks are

sometimes

unresponsive.

Sometimes

changes in the

environment

require the

system to

terminate.

General

Solution
Problem

51 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 51

Template Problem/General Solution -
other rows

Each subsequent row of the problem general solution
template provides rationale for one or more responsibilities.

Usually one row per responsibility, but sometimes rationale

for multiple responsibilities are the same and so multiple
responsibilities are included in one row.

Allows development team to understand reason for
responsibility and make cost/benefit decisions about:

• Necessity
• Utility

52 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 52

Cancel Problem/General Solution:
Responsibility R2

R2.

Provide a button,

menu item,

keyboard shortcut

and/or other means

to cancel the active

command.

Software

has to

receive an

action from

the user to

do

something

Users have to

communicate

their intentions

to the software

through overt

acts (e.g., finger

movements)

General SolutionProblem

53 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 53

Cancel Problem/General Solution:
Responsibilities R3 and R4

R3.

Must always listen for the

cancel command or

environmental changes

R4.

Must be always gathering

information (state, resource

usage, actions, etc.) that

allow for recovery of the

state of the system prior to

the execution of the current

command

No one can

predict when the

users will want to

cancel

commands

No one can

predict when

the

environment

will change

General SolutionProblem

54 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 54

Appendix contains the full table of
forces and general responsibilities for
canceling commands.

• We have enumerated 21 responsibilities
• Some are conditional

- on aspects of the task
- or state of the software

55 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 55

Summary of responsibilities that any
implementation of cancel must consider

R1. Must provide a means to cancel a command
R2. Provide a button, menu item, keyboard shortcut and/or other

means to cancel the active command.
R3. Must always listen for the cancel command or environmental

changes
R4. Must always gather information (state, resource usage,

actions, etc.) that allow for recovery of the state of the system
prior to the execution of the current command

R5. Must acknowledge receipt of the cancellation command
appropriately within 150 msec. The acknowledgement must
be appropriate to the manner in which the command was
issued. For example, if the user pressed a cancel button,
changing the color of the button will be seen. If the user used
a keyboard shortcut, flashing the menu that contains that
command might be appropriate.

… to R21 (see Tutorial Notes)

Either the command itself is responsive

R6. The command must have the ability to cancel itself (I.e., it must fulfill

Responsibilities R10 to R21 (e.g., an object-oriented system would have a

cancel method in each object)

Or the command itself is not responsive

R7. An active portion of the application must ask the infrastructure to cancel the

command, or

R8. The infrastructure itself must provide a means to request the cancellation of

the application (e.g., task manager on Windows, force quit on MacOS)

R9. If either R7 or R8, then the infrastructure must have the ability to cancel the

active command (I.e., it must fulfill Responsibilities R10 to R21)

If the command has invoked collaborating processes

R10. The collaborating processes have to be informed of the cancellation of the

invoking command (these processes have their own responsibilities that they

must perform in response to this information, possibly treat it as a

cancellation.). The information given to collaborating processes may include

the request for cancellation, the progress of cancellation, and/or the

completion of cancellation.

56 USAP Tutorial ICSE2004

Continuation of responsibilities that any implementation of cancel

must consider

Either the system is capable of rolling back all changes to the state prior to execution

of the command.

R11. Restore the system back to its state prior to execution of the command.

Or the system is not capable of rolling back all changes to the state prior to execution

of the command.

R12. Restore the system back to as close to the state prior to execution of the

command as possible

R13. Inform the user of the difference between the prior state and the restored

state.

Either all resource can be restored

R14. Resources must be freed

Or some resources has been irrevocably consumed and cannot be restored

R15. Inform the user of the partially-restored resources in a manner that they will

see it.

For critical tasks with incomplete state or resource restoration,

R16. Require acknowledgement from the user that they are aware of the partially-

restored nature of the cancellation.

R17. Return control to the user, or not, depending on the forces from the task

R18. If control cannot be returned to the user, inform the user of this fact (and

ideally, why that is the case)

R19. Estimate the time it will take to cancel within 20%

R20. Inform the user of this estimate.

· If the estimate is between 1 and 10 seconds, changing the cursor shape is sufficient.

· If the estimate is more than 10 seconds, and time estimate is with 20%, then a

progress indicator is better.

· If estimate is more than 10 seconds but cannot be estimated accurately, consider

other alternatives (see TN, footnote 8)

R21. Once the cancellation has finished the system must provide feedback to the

user that cancellation is finished, e.g., if cursor was changed to busy indicator,

change it back to normal; if progress bar was displayed was displayed,

remove it; if dialog box was provided, close it.

57 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 57

Observations on general
responsibilities

Many details might be overlooked by implementer
• Free resources

• Provide feedback if not able to completely cancel
• Inform collaborators

Table provides rationale which enables cost/benefit

possibilities. e.g. “return control to the user immediately”

• Benefit is that user wants to multi-task – increased
efficiency

• Cost may be too high depending on system environment.

60 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 60

Overarching patterns

Designers do not build system design around desire for
architecturally sensitive usability scenarios.

Designers have some overarching pattern that they use.
e.g. PAC or J2EE-MVC

This overarching pattern introduces additional software
forces on specific solution.

Consider “inform collaborating processes” responsibility
when canceling web-based data base application.

Notice the difference in communication from PAC to J2EE-
MVC

61 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 61

Output
device

Input device

Presentation-Abstraction-Control (PAC)

Abstraction

Controller

Data base manager

Web browser

AbstractionPresentation

Controller

Abstraction

Controller

Abstraction

Controller

AbstractionPresentation

Controller

“Cancel”

“Cancel active command”

“Halt current transaction
and roll back”

62 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 62

J2EE MVC version of “inform collaborators”

Output
device

Input device

Command
Processor

Command
Processor

Model
Command

Processor

Command
Processor

View

Command
Processor

Command

Processor

Controller

“Cancel

button
pushed”

“Cancel”

No communication among
collaborators shown

“Cancel”

63 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 63

We’ll use J2EE-MVC as overarching
pattern to illustrate our USAPs

Overarching pattern will affect specific solution in our
USAPs

We’ll use J2EE-MVC as overarching pattern because it is

widely used in web applications.

Open question as to how, in general, choice of a different

overarching pattern would affect specific solutions

64 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 64

We’ll use a non-critical task for
the example
This implies that
• The user can have control while the cancellation is

happening
• The user need not acknowledge the results of the

cancellation

65 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 65

Specific Solution

Architectural view: Presentation of one (or more) aspects of
the architecture.

Common views:

• Component Diagram – shows major units of software but
does not show dynamic behavior or assignment of units

to various processors.

• Sequence Diagram – shows sequence of activities for a
single thread through the system

66 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 66

Context of the specific solution:
J2EE-MVC

:Controller

:View Active-

Command
:Model

:Controller:Controller

:View:View Active-

Command
:Model

Active-

Command
:Model

67 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 67

Component diagram for a specific
solution to Cancel

Prior-State-

Manager
:Model

:Controller

Cancellation-
Manager

:Model

Listener
:Controller

:View Active-

Command
:Model

Collaborating-

Process
:Model

Prior-State-

Manager
:Model

Prior-State-

Manager
:Model

:Controller:Controller

Cancellation-
Manager

:Model

Cancellation-
Manager

:Model

Listener
:Controller
Listener
:Controller

:View:View Active-

Command
:Model

Active-

Command
:Model

Collaborating-

Process
:Model

Collaborating-

Process
:Model

68 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 68

Responsibilities of new component –
Listener

• Type Controller
• Must always listen for the cancel command or

environmental changes (R3)

69 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 69

Responsibilities of new component –
Cancellation Manager

• Type Model
• Always listen and gather information (R3, R4)

• If the Active Command is not responding, handle the
cancellation (R7, R10, R11, R12)

• Free resources (R14)
• Estimate time to cancel (R19)

• Inform the user of Progress of the cancellation (R13,

R15, R20, R21)

Full text of responsibilities assigned to the Cancellation Manager in this example solution

R3. Must always listen for the cancel command or environmental changes

R4. Must always gather information (state, resource usage, actions, etc.) that allow for

recovery of the state of the system prior to the execution of the current command

R7. An active portion of the application must ask the infrastructure to cancel the command,

If R7, then R10. The collaborating processes have to be informed of the cancellation of the

invoking command (these processes have their own responsibilities that they must

perform in response to this information, possibly treat it as a cancellation.). The

information given to collaborating processes may include the request for cancellation,

the progress of cancellation, and/or the completion of cancellation.

If R7, then R11. Restore the system back to its state prior to execution of the command. OR

R12. Restore the system back to as close to the state prior to execution of the command

as possible

If R12, then R13. Inform the user of the difference between the prior state and the restored

state.

R14. All resources that can be freed must be freed.

If any resources are not capable of being freed, then R15. Inform the user of the partially-

restored resources in a manner that they will see it.

R19. Estimate the time it will take to cancel within 20%

R20. Inform the user of this estimate.

R21. Once the cancellation has finished the system must provide feedback to the user that

cancellation is finished, e.g., if cursor was changed to busy indicator, change it back to

normal; if progress bar was displayed was displayed, remove it; if dialog box was

provided, close it.

70 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 70

Responsibilities of new component –
Prior State Manager

• Type Model

• Must always gather information (state, resource usage,
actions, etc.) that allow for recovery of the state of the

system prior to the execution of the current command
(R4)

• If the Active Command is not responding (R7), work with

the Cancellation Manager to restore the system back to
its state prior to execution of the command (R11) or as

close as possible to that state (R12)

71 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 71

New responsibilities for old
components - View

• Type View
• Provide a button, menu item, keyboard shortcut and/or

other means to cancel the active command (R2)
• Must always listen for the cancel command or

environmental changes (R3)
• Provide feedback to the user about the progress of the

cancellation (R5, R13, R15, R20, R21)

Full text of responsibilities assigned to the View in this examp le solution

R2. Provide a button, menu item, keyboard shortcut and/or other means to cancel the active

command

R3. Must always listen for the cancel command or environmental changes

R5. Must acknowledge receipt of the cancellation command appropriately within 150 msec.

If any module did R12, then R13. Inform the user of the difference between the prior state and

the restored state.

If any module did R14, then R15. Inform the user of the partially -restored resources in a

manner that they will see it.

R20. Inform the user of the time estimate.

R21. Once the cancellation has finished the system must provide feedback to the user that

cancellation is finished, e.g., if cursor was changed to busy indicator, change it back to

normal; if progress bar was displayed was displayed, remove it; if dialog box was

provided, close it.

72 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 72

New responsibilities for old
components - Active Command
• Type Model

• Always gather information (R4)

• Handle the cancellation by terminating processes, and

restoring state and resources (R6, R10, R11, R12, R14)

• Provide appropriate feedback to the user (R13, R15, R19,

R20, R21)

Full text of responsibilities assigned to the Active Command in this example solution

R4. Must always gather information (state, resource usage, actions, etc.) that allow for

recovery of the state of the system prior to the execution of the current command

R6. The command must respond by canceling itself (I.e., it must fulfill Responsibilities R10 to

R21 (e.g., an object-oriented system would have a cancel method in each object)

If R6 then R10. The collaborating processes have to be informed of the cancellation of the

invoking command (these processes have their own responsibilities that they must

perform in response to this information, possibly treat it as a cancellation.). The

information given to collaborating processes may include the request for cancellation,

the progress of cancellation, and/or the completion of cancellation.

If R6, then R11. Restore the system back to its state prior to execution of the command. Or

R12. Restore the system back to as close to the state prior to execution of the command

as possible

If R12, then R13. Inform the user of the difference between the prior state and the restored

state.

R14. Resources that can be freedmust be freed

If any resources are not capable of being freed, then R15. Inform the user of the partially-

restored resources in a manner that they will see it.

R19. Estimate the time it will take to cancel within 20%

R20. Inform the user of this estimate.

R21. Once the cancellation has finished the system must provide feedback to the user that

cancellation is finished, e.g., if cursor was changed to busy indicator, change it back to

normal; if progress bar was displayed was displayed, remove it; if dialog box was

provided, close it.

73 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 73

Responsibilities not assigned or
shown in our diagrams and why.
• We are not considering a “critical task” where the

progress and results of the cancellation must effect user

behavior, therefore R16 and R18 are not assigned.
• J2EE-MVC implicitly returns control to the user during

cancellation, so R17is not assigned.
• Our diagram does not show the infrastructure in which

the application runs, therefore responsibilities assigned

to the infrastructure are not shown (R8, R9)

List of responsibilities not assigned to our components or not shown in the diagrams.

R8. The infrastructure itself must provide a means to request the cancellation of the
application (e.g., task manager on Windows, force quit on MacOS)

R9. If either R7 or R8, then the infrastructure must have the ability to cancel the active

command (I.e., it must fulfill Responsibilities R10 to R21)

R16 Require acknowledgement from the user that they are aware of the partially-

restored nature of the cancellation. (we’re not doing a “critical task” in this
example)

R17. Return control to the user, or not, depending on the forces from the task (implicit

in J2EE-MVC)

R18. If control cannot be returned to the user, inform the user of this fact (and ideally,

why that is the case) (we’re not doing a “critical task” in this example)

74 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 74

:View

Sequence diagram of activities prior
to issuing cancel command

:Controller Active-

Command
:Model

Prior-State-

Manager
:Model

Cancellation-

Manager
:Model

:User

normal

operation

invoke
register (R4)

save current state (R4)

normal

operation

Xxx put in note about the components that don’t show up in this sequence

75 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 75

command (R5)

:View Listener

:Controller

Active-

Command
:Model

Prior-State-

Manager
:Model

Cancellation

-Manager
:Model

press
cancel
button (R1,2) send cancel

request (R2, R3) cancel active
command (R3)

change cursor shape (R20)

acknowledge
user’s

estimates cancel

time between
1 and 10 secs

(R19, busy cursor
needed)

are you alive? (R6)

yes (R6)

return original state (R11)

original state (R11)

release
resources (R14)

exiting R21)

x
restore cursor (R21)

:User

Sequence diagram of activities after
issuing cancel command

Xxx put in note about the components that don’t show up in this sequence

76 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 76

Comment on sequence diagrams

Important portion of cancel is that listener is on separate
thread of control (otherwise listener may be blocked

because command is not responding and command owns
the active thread).

Sequence diagram does not make this explicit. It is implicit

in fact that listener responds regardless of state of active

command.

Sequence diagram is UML (standard). Difficult to show
threads in UML.

80 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 80

A Second USAP

Observing System State

81 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 81

Types of Feedback

Observing System state: To inform users of the
internal system state and state changes.

Progress indicator: To inform users that the
system is processing an action that will take some
time to complete.

Interaction Feedback: To inform users that the
system has registered a user interaction, that is, that
the system has heard users.

Warning: To inform users of any irreversible action.

82 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 82

USAP Template

Context
• Situation
• Conditions
• Potential usability benefits

Problem and General Solution

Specific Solution

83 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 83

Observing System State:
Situation

Potential Usability Benefits

Conditions

Situation: When some change in system state occurs, the user
should be notified, specially when the state change affects to state
information that is displayed.

84 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 84

Observing System State:
Conditions

Potential Usability Benefits

Conditions:
• A user may not be given the system state data necessary to
operate the system (e.g., uninformative error messages, no file size
given for folders).
• The system state may be given in a way that violates human
tolerances (e.g., displayed too quickly for people to read).
• The system state may also be given unclearly, thereby confusing
the user.
• System designers should account for human needs and
capabilities when deciding what aspects of a system state to display
and how to do so.

Situation: When some change in system state occurs, the user
should be notified.

85 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 85

Observing System State:
Potential Usability Benefits

Potential Usability Benefits:
A. Increase individual user effectiveness

A.1 Expedite routine performance
A.1.2 Reduce the impact of routine user errors (slips)

A.2 Improve non-routine performance
A.2.1 Support problem-solving
A.2.2 Facilitate learning

A.3 Reduce the impact of user mistakes
A.3.2 Accommodate mistakes

C. Increase user confidence and comfort

Conditions:
• A user may not be given the system state data necessary to…

Situation: When some change in system state occurs, the user
should be notified.

86 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 86

USAP Template

Context

Problem and General Solution

Specific Solution

87 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 87

USAP Template

Context

Problem and General Solution
• Forces exerted by the environment and the task

• Forces exerted by human desires and capabilities

• Forces exerted by the state of the software

• Responsibilities of the general solution that resolve the
forces

Specific Solution

88 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 88

Observing System State:
Human Forces (1/2)

1. When some change in system state occurs, the
user should be notified (HF01)

2. If the system fails, the user should be notified
(HF02)

3. Users need to be alerted of the fact that a
command does not respond (HF03)

89 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 89

Observing System State:
Environmental Forces

1. Resources, be it the network, a database, etc., can
become not operational (EF01)

90 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 90

Observing System State:
System Forces (1/2)

1. System state changes (SF01)

2. Systems sometimes fail (SF02)

3. Commands sometimes die (SF03)

91 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 91

Observing System State:
Problem - Responsibilities

Responsibilities of the
software system that
resolve the forces

Forces
exerted by
the state of
the software

Forces
exerted by
human
desires and
capabilities

Forces
exerted by
the
environment
and the task

General SolutionProblem

92 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 92

Observing System State:
Problem - Responsibilities

Problem/Forces:

SF01. The software changes

HF01. When some change in
system state occurs, the user
should be notified.

Solution/Responsibilities:

R01. The software should be able
to listen to active commands,
because they can provide
information about the state of the
system. If this information is useful
to the user, the system should be
able to provide this information to
the user in the appropriate manner
and in the proper location.

93 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 93

Observing System State:
Problem - Responsibilities

Problem/Forces:

SF03. Commands sometimes fail to
be operational

HF02: If the system fails, the user
should be notified

HF03: To alert users of the fact that
a command does not respond

Solution/Responsibilities:

R02: As active commands can fail,
the software system should be able
to check at any time whether a given
command is being executed and, if
the command fails, inform users that
the command is not operational.

94 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 94

Observing System State:
Problem - Responsibilities

Problem/Forces:

EF1: Resources, be it the network, a
database, etc., can become not
operational

Solution/Responsibilities:

R03: The software should be able to
listen to or query external resources,
like networks or databases, about
their state, to inform properly the user
if any resource is not performing
properly.

95 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 95

Observing System State:
Problem - Responsibilities

Problem/Forces:

HF01. When some change in
system state occurs, the user
should be notified.

Solution/Responsibilities:

R04: The software should be able to
check the system resources and
inform the user about their use.

96 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 96

USAP Template

Context

Problem and General Solution

Specific Solution
• General responsibilities
• Forces exerted by previous design decisions
• Allocation of responsibilities to specific components
• Rationale

97 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 97

Observing System State:
General Responsibilities

R01: Listen to active commands
R02: Ascertain the state of active commands
R03: Listen to or query external sources
R04: Check the state of system resources

98 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 98

Observing System State:
Forces from design decisions

Architectural styles for the system will
affect specific solution

We have used J2EE-MVC as an
architectural style for designing a specific
solution

99 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 99

Context of the specific solution:
J2EE-MVC

:Controller

:View Active-
Command
:Model

:Controller:Controller

:View:View Active-
Command
:Model

Active-
Command
:Model

100 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 100

Observing System State:
Allocation of responsibilities

R1. The software should be
able to listen to active
commands. If this information is
useful to the user, the system
should be able to provide this
information to the user in the
appropriate manner not only
through the display.

Model: Should include an
element that listens to active
commands and, if the info is
useful, sends it to the
controller.
View: Should be able to
inform the user in the
appropriate manner.
Controller: Should be
able to select the appropriate
view to show the information
to the user.

101 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 101

Observing System State:
Allocation of responsibilities

R1

Model: Should include an
element that listens to active
commands and, if the info is
useful, sends it to the
controller.
View: Should be able to
inform the user in the
appropriate manner.
Controller: Should be able
to select the appropriate view
to show the information to the
user.

Active Command: Represents
the command in progress and
should inform the appropriate
feedbacker if the user is to be
notified of something
Feedbacker: Receives the

information to be displayed from
the model or a change of view from
the controller

Controller: Should be listening
to the Viewer and, if the user
requests an action creates the
required command, an instance of
active command

102 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 102

Observing System State:
Allocation of responsibilities

Controller: Should be listening to the
Viewer and, if the user requests an
action creates the required command,
an instance of active command

Controller: Should be able to select
the appropriate view to show the
information to the user.

Feedbacker: Receives the
information to be displayed from the
model or a change of view from the
controller

View: Should be able to inform the
user in the appropriate manner.

Active command: Represents the
command in progress and should
inform appropriate feedbacker if the
user is to be notified of something

Model: The model should include an
element that listens to active
commands and, if the information is
useful, sends the information to be
passed on to the user (see model
decomposition)

R01:The software should be able to
listen to active commands, because
they can provide information about
the state of the system. If this
information is useful to the user, the
system should be able to provide this
information to the user in the
appropriate manner and in the
appropriate location, not only through
the display.

Allocation of responsibilities
to specific components

Forces exerted by previous
design decisions

General Responsibilities of
the software

103 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 103

Observing System State:
Specific Solution

Check whether or not the ongoing command is
dead.

Check whether or not external resources are
dead.

Check whether or not the system has enough
resources to execute the ongoing command.

104 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 104

Observing System State:
Specific Solution

Active
Command:model

:View

:Controller

105 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 105

Observing System State:
Specific Solution

Viewer
:view

Feedbacker
:view

Active
Command:model

Resource
Checker:model

System-Resource
-Checker:model

:Controller

106 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 106

Observing System State:
Responsibilities of new components

Must be able to check whether or not the system can
provide enough resources to properly execute the
ongoing command (R04)

System Resource
Checker

(Type Model)

Must be able to check whether or not the ongoing
command is alive (R02)
Must be able to check whether or not the external
resources are alive (R03)

Resource Checker
(Type Model)

Receive info from Resource Checker and select the
appropriate feedback (R02, R03, R04)

Feedbacker
(Type Model)

RESPONSIBILITIESNEW COMPONENT

107 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 107

Observing System State:
Specific Solution

Viewer
:view

Feedbacker
:view

Active
Command:model

Resource
Checker:model

System-Resource
-Checker:model

:Controller

108 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 108

Observing System State:
Responsibilities of old components

Must always listen for the viewer requests to create
the respective active command.

Controller
(Type Controller)

Represents the command in progress and should
inform the Feedbacker about any change produced.

Active Command
(Type Model)

Must be able to gather user requests.Viewer
(Type View)

RESPONSABILITIESOLD COMPONENT

109 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 109

Observing System State:
Responsibilities related to control

The Active Command should run in a different
thread from the Resource Checker component

The Active Command should run in a different
thread from the System Resource Checker
component

110 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 110

Observing System State:
Specific Solution

Imagine we are faced with a situation where:

The ongoing command is dead

111 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 111

Observing System State:
Specific Solution

 : Feedbacker: view

 : User

 :
Viewer:view

 : Controller : Active-Command: model :
ResourceChecker:model

(EI02) Action()
(3) Action()

(4) CreateCommand()

IP02 CheckCriticity()

(IP01) CalculateElapsedTime()

(IP03) CheckKindOfOperat ion()

(7) AreYouAliv e()

(1) Feedback (ongoing command dead)

112 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 112

Observing System State:
Specific Solution

Imagine we are faced with a situation where:

There are not enough resources to execute the
ongoing command

113 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 113

Observing System State:
Specific Solution

 : Feedbacker: v iew

 : User

 :
Viewer:v iew

 : Controller : Activ e-Command: model :
Systrem-Resource-Checker:model

(EI02) Action()
(3) Action()

(4) CreateCommand()

(IR01) CheckSystemResouces(

(1) Feedback(close-the-sy stem)

114 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 114

Observing System State:
Specific Solution

Imagine we are faced with a situation where:

The external resources are performing properly

115 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 115

Observing System State:
Specific Solution

 : Feedbacker: view

 : User

 :
Viewer:view

 : Controller : Active-Command: model

 :
External-Resouce

 :
ResourceChecker:model

IP01 and 1 U ntil
end of operat ion

(EI02) Action()
(3) Action()

(4) CreateCommand()

IP02 CheckCri ti city()

(IP01) CalculateElapsedTime()

(IP03) CheckKindOfOperation()

(1) Feedback(Kind-of-feedback, information)

(1) Feedback (end-of-operation)

(ER01) CheckExternalResources()

(ER02) ExternalResourceAv ailable()

118 USAP Tutorial ICSE2004

USAP Tutorial ICSE 2004 - page 118

Tutorial Summary

Software architectural design can support iterative design through
separation based patterns, but some usability issues are difficult
to resolve through iterative design.

Architecturally sensitive scenarios are examples of problems that
are difficult to implement once architecture is designed.

USAPs are an attempt to capture some of these problems,
provide rationale to support cost/benefit analysis, provide general
set of responsibilities for any solution, and provide sample
specific solution to further guide software designer.

Currently have about two dozen architecturally sensitive
scenarios and are in process of turning these into USAPs.

1

Agenda

9:00-10:30 Intro to HCI and UI tools
10:30-10:45 Break
10:45-12:15 Usability and Software Architectures

(Part 1)
12:15-1:15 Lunch
1:15-2:45 Usability and Software Architectures

(Part 2)
2:45-3:00 Break
3:00-4:30 End-User Implications of Infrastructure
4:30-5:00 Homework discussion

Stuck in the Middle

How do you evaluate the worthiness of infrastructure
(e.g., middleware, architecture, toolkit)?

Recall example of read-eval loop versus notification-
based programming for interactive dialogue.

Let’s look at a detailed example of an
infrastructure/toolkit and then explore the
evaluation question.

Context-Aware Computing

Effective use of context is the key to a ubicomp
environment that does the right thing.

Supporting the right abstractions and services for
handling context makes it easier to design, build
and evolve context-aware applications.

2

The Importance of Context

• What is context?
– any information that can be used to characterize the

situation of an entity

– emphasis on implicit context, that applications do not
have access to

• C-A research is slowed by difficulty of development

Why are C-A Applications Hard to Build?

Cyberguide case study: no separation of concerns

Separation of Concerns

• Acquisition
• Representation
• Storage
• Distribution
• Reaction

3

Inspiration

• Analogy to GUI toolkits

• What is the context equivalent to the GUI widget or
interactor?

The Context Toolkit

• Simplify application’s view of world

Application Application

Widget

Sensor

Widget

Sensor

Widget

Sensor

XML over HTTP

Flexible Representation

Widget

Sensor

Widget

Application Application

Interpreter Interpreter

Sensor

4

Focus on Entities

Widget

Sensor

Widget

Application

Interpreter
Aggregator

Sensor

Focus on Context, not Source

Widgets

Applications

Interpreters Aggregators

Discoverer
We provide

We desire

Widget

Sensor

Widget

Application Application

Interpreter Interpreter
Aggregator

Sensor

Context
Architecture

Evaluating the CTK

So, how do we determine if CTK is a good solution to
developing context-aware applications?

Look at apps it can be used to develop.

5

Applications

• In/Out Board and Context-Aware Mailing List (CHI‘99) – simple, reusable

Applications

• Serendipitous Capture – evolving application

Applications

• Conference Assistant (ISWC‘00) – complex, re-use, evolving

Slide
User Notes

Interest Control

Audio/Video
Indicator

Slide text User notes

Retrieved
slide

Query
Interface

Schedule

context widgetsIdentity, Location, Activity
of People, Places, Things

Joe Smith context

6

Lessons Learned

• Lesson 1—Prioritize core infrastructure features.

• Lesson 2—First, build prototypes that express the
core objectives of the infrastructure.

• Lesson 3—Any test-application built to demonstrate
the infrastructure must also satisfy the usual
criteria of usability and usefulness.

• Lesson 4—Initial proof-of-concept applications
should be lightweight.

Lessons Learned (cont’d)

• Lesson 5—Be clear about that your test-application
prototypes will tell you about your infrastructure.

• Lesson 6—Do not confuse the design and testing of
experimental infrastructure with the provision of an
infrastructure for experimental application developers.

• Lesson 7—Be sure to define a limited scope for
testapplications and permissible uses of the infrastructure.

• Lesson 8—There is no point in faking components and data
if you want to test for user experience benefits.

Homework/Exam Option 1

Read the following article:

Eelke Folmer, Jilles van Gurp, Jan Bosch (2004)
Architecture-Level Usability Assessment.
Proceedings of EHCI, Hamburg.

Write a 1-page (500 words) comparison of the
assessment technique described in this paper with
the SEI Usability and Software Architecture techique
described today.

7

Homework/Exam Option 2

If you have ever been involved in the development of
a middleware solution or toolkit, provide a half-page
(250 words) description of the middleware/toolkit
and then a half-page (250 words) reflection on
which of the “lessons learned” applied to your
development team experience with the
effectiveness or ineffectiveness of your
middleware/toolkit. Finally, provide one example of
a usability feature that would be difficult to
implement with your middleware/toolkit.

Software Architecture Analysis of Usability

Eelke Folmer, Jilles van Gurp, Jan Bosch

University of Groningen, the Netherlands
mail@eelke.com, jilles@jillesvangurp.com, Jan.Bosch@cs.rug.nl

Studies of software engineering projects [1,2] show that a large number of
usability related change requests are made after its deployment. Fixing usability
problems during the later stages of development often proves to be costly, since
many of the necessary changes require changes to the system that cannot be
easily accommodated by its software architecture. These high costs prevent
developers from meeting all the usability requirements, resulting in systems
with less than optimal usability. The successful development of a usable
software system therefore must include creating a software architecture that
supports the right level of usability. Unfortunately, no architecture-level
usability assessment techniques exist. To support software architects in creating
a software architecture that supports usability, we present a scenario based
assessment technique that has been successfully applied in several cases.
Explicit evaluation of usability during architectural design may reduce the risk
of building a system that fails to meet its usability requirements and may
prevent high costs incurring adaptive maintenance activities once the system
has been implemented.

1 Introduction

One of the key problems with many of today’s software is that they do not meet
their quality requirements very well. In addition, it often proves hard to make the
necessary changes to a system to improve its quality. A reason for this is that many of
the necessary changes require changes to the system that cannot be easily
accommodated by the software architecture [3] The software architecture, the
fundamental organization of a system embodied in its components, their relationships
to each other and to the environment and the principles guiding its design and
evolution [4] does not support the required level of quality.

The work in this paper is motivated by the fact that this also applies to usability.
Usability is increasingly recognized as an important consideration during software
development; however, many well-known software products suffer from usability
issues that cannot be repaired without major changes to the software architecture of
these products. This is a problem for software development because it is very
expensive to ensure a particular level of usability after the system has been
implemented. Studies [1,2] confirm that a significant large part of the maintenance
costs of software systems is spent on dealing with usability issues. These high costs
can be explained because some usability requirements will not be discovered until the
software has been implemented or deployed. This is caused by the following:

2 Eelke Folmer, Jilles van Gurp, Jan Bosch

• Usability requirements are often weakly specified.
• Usability requirements engineering techniques have only a limited ability to

capture all requirements.
• Usability requirements may change during development.
Discovering requirements late is a problem inherent to all software development and
is something that cannot be easily solved. The real problem is that it often proves to
be hard and expensive to make the necessary changes to a system to improve its
usability. Reasons for why this is so hard:
• Usability is often only associated with interface design but usability does also

depend on issues such as the information architecture, the interaction architecture
and other quality attributes (such as efficiency and reliability) that are all
determined by the software architecture. Usability should therefore also be realized
at the architectural level.

• Many of the necessary usability changes to a system cannot be easily be
accommodated by the software architecture. Some changes that may improve
usability require a substantial degree of modification. For example changes that
relate to the interactions that take place between the system and the user, such as
undo to a particular function or system wide changes such as imposing a consistent
look and feel in the interface.

The cost of restructuring the system during the later stages of development has proven
to be an one order of magnitude higher than the costs of an initial development [3].
The high costs spent on usability during maintenance can to an extent be explained by
the high costs for fixing architecture-related usability issues. Because during design
different tradeoffs have to be made, for example between cost and quality, these high
costs may prevent developers from meeting all the usability requirements. The
challenge is therefore to cost effectively usable software e.g. minimizing the costs &
time that are spent on usability.

Based upon successful experiences [5] with architectural assessment of
maintainability as a tool for cost effective developing maintainable software, we
developed architectural analysis of usability as an important tool to cost effectively
development usable software i.e. if any problems are detected at this stage, it is still
possible to change the software architecture with relative cheap costs. Software
architecture analysis contributes to making sure the software architecture supports
usability. Software architecture analysis does not solve the problem of discovering
usability requirements late. However, it contributes to an increased awareness of the
limitations the software architecture may place on the level of usability that can be
achieved. Explicit evaluation of software architectures regarding usability is a
technique to come up with a more usable first version of a software architecture that
might allow for more “usability tuning” on the detailed design level, hence,
preventing some of the high costs incurring adaptive maintenance activities once the
system has been implemented.

In [6] an overview is provided of usability evaluation techniques that can be used
during the different stages of development, unfortunately, no usability assessment
techniques exists that explicitly focus on the assessment of the software architecture.
The contribution of this paper is an assessment technique that assists software
architects in designing a software architecture that supports usability called SALUTA
(Scenario based Architecture Level UsabiliTy Analysis).

Software Architecture Analysis of Usability 3

The remainder of this paper is organized as follows. In the next section, the
relationship between software architecture and usability is discussed. Section 3
discusses various approaches to software architecture analysis. Section 4 presents an
overview of the main steps of SALUTA. Section 5 presents some examples from a
case study for performing usability analysis in practice and discusses the validation of
the method. Finally the paper is concluded in section 6.

2 Relationship between Usability and Software Architecture

A software architecture description such as a decomposition of the system into
components and relations with its environment may provide information on the
support for particular quality attributes. Specific relationships between software
architecture (such as - styles, -patterns etc) and quality attributes (maintainability,
efficiency) have been described by several authors. [7,8,3]. For example [7] describes
the architectural pattern layers and the positive effect this pattern may have on
exchangeability and the negative effect it may have on efficiency.

Until recently [9,10] such relationships between usability and software architecture
had not been described nor investigated. In [10] we defined a framework that
expresses the relationship between usability and software architecture based on our
comprehensive survey [6]. This framework is composed of an integrated set of design
solutions such as usability patterns and usability properties that have a positive effect
on usability but are difficult to retrofit into applications because they have
architectural impact. The framework consists of the following concepts:

2.1 Usability attributes

A number of usability attributes have been selected from literature that appear to form
the most common denominator of existing notions of usability:
− Learnability - how quickly and easily users can begin to do productive work with a

system that is new to them, combined with the ease of remembering the way a
system must be operated.

− Efficiency of use - the number of tasks per unit time that the user can perform
using the system.

− Reliability in use the error rate in using the system and the time it takes to recover
from errors.

− Satisfaction - the subjective opinions of the users of the system.

2.2 Usability properties

A number of usability properties have been selected from literature that embody the
heuristics and design principles that researchers in the usability field consider to have
a direct positive influence on usability. They should be considered as high-level

4 Eelke Folmer, Jilles van Gurp, Jan Bosch

design primitives that have a known effect on usability and most likely have
architectural implications. Some examples:
• Providing Feedback - The system should provide at every (appropriate) moment

feedback to the user in which case he or she is informed of what is going on, that
is, what the system is doing at every moment.

• Consistency - Users should not have to wonder whether different words, situations,
or actions mean the same thing. Consistency has several aspects:
− Visual consistency: user interface elements should be consistent in aspect and

structure.
− Functional consistency: the way to perform different tasks across the system

should be consistent.
− Evolutionary consistency: in the case of a software product family, consistency

over the products in the family is an important aspect.

2.3 Architecture sensitive usability patterns

A number of usability patterns have been identified that should be applied during the
design of a system’s software architecture, rather than during the detailed design
stage. This set of patterns has been identified from various cases in industry, modern
software, literature surveys as well as from existing (usability) pattern collections.
Some examples:
• Actions on multiple objects - Actions need to be performed on objects, and users

are likely to want to perform these actions on two or more objects at one time [11].
• Multiple views - The same data and commands must be potentially presented using

different human-computer interface styles for different user preferences, needs or
disabilities [12].

• User profiles - The application will be used by users with differing abilities,
cultures, and tastes [11].

Unlike the design patterns, architecturally sensitive patterns do not specify a specific
design solution in terms of objects and classes. Instead, potential architectural
implications that face developers looking to solve the problem the architecturally
sensitive pattern represents are outlined. For example, to facilitate actions on multiple
objects, a provision needs to be made in the architecture for objects to be grouped into
composites, or for it to be possible to iterate over a set of objects performing the same
action for each. Actions for multiple objects may be implemented by the composite
pattern [8] or the visitor pattern [8].

(Positive) relationships have been defined between the elements of the framework
that link architectural sensitive usability patterns to usability properties and attributes.
These relationships have been derived from our literature survey. The usability
properties in the framework may be used as requirements during design. For example,
if a requirements species, "the system must provide feedback”, we use the framework
to identify which usability patterns may be implemented to fulfill these properties by
following the arrows in Figure 1. Our assessment technique uses this framework to
analyze the architecture’s support for usability.

Software Architecture Analysis of Usability 5

Fig. 1. Usability Framework

3 Software architecture assessment

The design and use of an explicitly defined software architecture has received
increasing amounts of attention during the last decade. Generally, three arguments for
defining an architecture are used [13]. First, it provides an artifact that allows
discussion by the stakeholders very early in the design process. Second, it allows for
early assessment of quality attributes [14,3]. Finally, the design decisions captured in
the software architecture can be transferred to other systems.
Our work focuses on the second aspect: early assessment of usability. Most
engineering disciplines provide techniques and methods that allow one to assess and
test quality attributes of the system under design. For example for maintainability

6 Eelke Folmer, Jilles van Gurp, Jan Bosch

assessment code metrics [15] have been developed. In [6] an overview is provided of
usability evaluation techniques that can be used during software development. Some
of the more popular techniques such as user testing [16], heuristic evaluation [17] and
cognitive walkthroughs [18] can be used during several stages of development.
Unfortunately, no usability assessment techniques exist that focus on assessment of
software architectures. Without such techniques, architects may run the risk of
designing a software architecture that fails to meet its usability requirements. To
address to this problem we have defined a scenario based assessment technique
(SALUTA).

The Software Architecture Analysis Method (SAAM) [19] was among the first to
address the assessment of software architectures using scenarios. SAAM is
stakeholder centric and does not focus on a specific quality attribute. From SAAM,
ATAM [14] has evolved. ATAM also uses scenarios for identifying important quality
attribute requirements for the system. Like SAAM, ATAM does not focus on a single
quality attribute but rather on identifying tradeoffs between quality attributes.
SALUTA can be integrated into these existing techniques.

3.1 Usability specification

Before a software architecture can be assessed for its support of usability, the required
usability of the system needs to be determined. Several specification styles of
usability have been identified [20]. One shortcoming of these techniques [17,21,22] is
that they are poorly suited for architectural assessment.
• Usability requirements are often rather weakly specified: practitioners have great

difficulties specifying usability requirements and often end up stating: “the system
shall be usable” [20].

• Many usability requirements are performance based specified [20]. For example,
such techniques might result in statements such as “customers must be able to
withdraw cash within 4 minutes” or “80% of the customers must find the system
pleasant”.

Given an implemented system, such statements may be verified by observing how
users interact with the system. However, during architecture assessment such a system
is not yet available. Interface prototypes may be analyzed for such requirements
however we want to analyze the architecture for such requirements.

A technique that is used for specifying the required quality requirements and the
assessment of software architectures for these requirements are scenario profiles [5].
Scenario profiles describe the semantics of software quality attributes by means of a
set of scenarios. The primary advantage of using scenarios is that scenarios represent
the actual meaning of a requirement. Consequently, scenarios are much more specific
and fine-grained than abstract usability requirements. The software architecture may
then be evaluated for its support for the scenarios in the scenario profile. Scenario
profiles and traditional usability specification techniques are not interfering; scenarios
are just a more concrete instance of these usability requirements.

Software Architecture Analysis of Usability 7

3.2 Usage profiles

A usage profile represents the required usability of the system by means of a set of
usage scenarios. Usability is not an intrinsic quality of the system. According to the
ISO definition [23], usability depends on:
• The users - who is using the product? (system administrators, novice users)
• The tasks - what are the users trying to do with the product? (insert order, search

for item X)
• The context of use - where and how is the product used? (helpdesk, training

environment)
Usability may also depend on other variables, such as goals of use, etc. However in a
usage scenario only the variables stated above are included. A usage scenario is
defined as “an interaction (task) between users, the system in a specific context of
use”. A usage scenario specified in such a way does not yet specify anything about
the required usability of the system. In order to do that, the usage scenario is related to
the four usability attributes defined in our framework. For each usage scenario,
numeric values are determined for each of these usability attributes. The numeric
values are used to determine a prioritization between the usability attributes.

For some usability attributes, such as efficiency and learnability, tradeoffs have to
be made. It is often impossible to design a system that has high scores on all
attributes. A purpose of usability requirements is therefore to specify a necessary level
for each attribute [20]. For example, if for a particular usage scenario learnability is
considered to be of more importance than other usability attributes (maybe because of
a requirement), then the usage scenario must reflect this difference in the priorities for
the usability attributes. The analyst interprets the priority values during the analysis
phase (section 4.3) to determine the level of support in the software architecture for
the usage scenario.

4 SALUTA

In this section we present SALUTA (Scenario based Architecture Level UsabiliTy
Analysis. SALUTA consists of the following four steps:
1. Create usage profile.
2. Describe provided usability.
3. Evaluate scenarios.
4. Interpret the results.
When performing an analysis the separation between these steps is not very strict and
it is often necessary to iterate over various steps. In the next subsections, however the
steps are presented as if they are performed in strict sequence.

4.1 Create usage profile

The steps that need to be taken for usage profile creation are the following:

8 Eelke Folmer, Jilles van Gurp, Jan Bosch

1. Identify the users: rather than listing individual users, users that are representative
for the use of the system should be categorized in types or groups (for example
system administrators, end-users etc).

2. Identify the tasks: Instead of converting the complete functionality of the system
into tasks, representative tasks are selected that highlight the important features of
the system. For example, a task may be “find out where course computer vision is
given”.

3. Identify the contexts of use: In this step, representative contexts of use are
identified. (For example. Helpdesk context or disability context.) Deciding what
users, tasks and contexts of use to include requires making tradeoffs between all
sorts of factors. An important consideration is that the more scenarios are evaluated
the more accurate the outcome of the assessment is, but the more expensive and
time consuming it is to determine attribute values for these scenarios.

4. Determine attribute values: For each valid combination of user, task and context of
use, usability attributes are quantified to express the required usability of the
system, based on the usability requirements specification. Defining specific
indicators for attributes may assist the analyst in interpreting usability requirements
as will be illustrated in the case study in section 5. To reflect the difference in
priority, numeric values between one and four have been assigned to the attributes
for each scenario. Other techniques such as pair wise comparison may also be used
to determine a prioritization between attributes.

5. Scenario selection & weighing: Evaluating all identified scenarios may be a costly
and time-consuming process. Therefore, the goal of performing an assessment is
not to evaluate all scenarios but only a representative subset. Different profiles may
be defined depending on the goal of the analysis. For example, if the goal is to
compare two different architectures, scenarios may be selected that highlight the
differences between those architectures. If the goal is to predict the level of
usability for an architecture, scenarios may be selected that are important to the
users. To express differences between usage scenarios in the usage profile,
properties may be assigned to scenarios, for example: priority or probability of use
within a certain time. The result of the assessment may be influenced by weighing
scenarios, if some scenarios are more important than others, weighing these
scenarios reflect these differences. The usage profile that is created using these
steps is summarized in a table (See Table 2).

Fig. 2. Example usage profile

Software Architecture Analysis of Usability 9

This step results in a set of usage scenarios that accurately express the required
usability of the system. Usage profile creation is not intended to replace existing
requirements engineering techniques. Rather it is intended to transform (existing)
usability requirements into something that can be used for architecture assessment.
Existing techniques such as such as interviews, group discussions or observations
[17,22,24] typically already provide information such as representative tasks, users
and contexts of use that are needed to create a usage profile. Close cooperation
between the analyst and the person responsible for the usability requirements (such as
a usability engineer) is required. The usability engineer may fill in the missing
information on the usability requirements, because usability requirements are often
not explicitly defined.

4.2 Describe provided usability

In the second step of SALUTA, the information about the software architecture is
collected. Usability analysis requires architectural information that allows the analyst
to determine the support for the usage scenarios. The process of identifying the
support is similar to scenario impact analysis for maintainability assessment [5] but is
different, because it focuses on identifying architectural elements that may support the
scenario. Two types of analysis techniques are defined:
• Usability pattern based analysis: using the list of architectural sensitive usability

patterns defined in our framework the architecture’s support for usability is
determined by the presence of these patterns in the architecture design.

• Usability property based analysis: The software architecture can be seen as the
result of a series of design decisions [25]. Reconstructing this process and
assessing the effect of such individual decisions with regard to usability attributes
may provide additional information about the intended quality of the system. Using
the list of usability properties defined in our framework, the architecture and the
design decisions that lead to this architecture are analyzed for these properties.

The quality of the assessment very much depends on the amount of evidence for
patterns and property support that is extracted from the architecture. Some usability
properties such as error management may be implemented using architectural patterns
such as undo, cancel or data validation. However, in addition to patterns there may be
additional evidence in the form of other design decisions that were motivated by
usability properties. The software architecture of a system has several aspects (such as
design decisions and their rationale) that cannot easily be captured or expressed in a
single model. Different views on the system [26] may be needed access such
information. Initially the analysis is based on the information that is available, such as
diagrams etc. However due to the non explicit nature of architecture design the
analysis strongly depends on having access to both design documentation and
software architects. The architect may fill in the missing information on the
architecture. SALUTA does not address the problem of properly documenting
software architectures and design decisions. The more effort is put into documenting
the software architecture the more accurate the assessment is.

10 Eelke Folmer, Jilles van Gurp, Jan Bosch

4.3 Evaluate scenarios

SALUTA’s next step is to evaluate the support for each of the scenarios in the usage
profile. For each scenario, it is analyzed by which usability patterns and properties,
that have been identified in the previous step, it is affected. A technique we have used
for identifying the provided usability in our cases is the usability framework
approach. The relations defined in the framework are used to analyze how a particular
pattern or property affects a specific usability attribute. For example if it has been
identified that undo affects a certain scenario. Then the relationships of the undo
pattern with usability are analyzed (see Figure 1) to determine the support for that
particular scenario. Undo in this case may increase reliability and efficiency. This step
is repeated for each pattern or property that affects the scenario. The analyst then
determines the support of the usage scenario based on the acquired information. See
Figure 2 for a snapshot assessment example.

Fig. 3. Snapshot evaluation example

For each scenario, the results of the support analysis are expressed qualitatively
using quantitative measures. For example the support may be expressed on a five
level scale (++, +, +/-,-,--). The outcome of the overall analysis may be a simple
binary answer (supported/unsupported) or a more elaborate answer (70% supported)
depending on how much information is available and how much effort is being put in
creating the usage profile.

4.4 Interpret the results

Finally, after scenario evaluation, the results need to be interpreted to draw
conclusions concerning the software architecture. This interpretation depends on two
factors: the goal of the analysis and the usability requirements. Based on the goal of
the analysis, a certain usage profile is selected. If the goal of the analysis is to

Software Architecture

������ ������ 	
�����
��

����

����������
�� ������������� ����������� ������������

��������

�	�	
����

������ ����

��������� ���
�	�	�	����

��	����
� ����� �������

�������	��������
�����������

���� �	��� �����

�	��� ��� ���
�������	���

�������������	����

��� �������� �����
�	�����

��� ������� �������

������ ���������
�
������	���

���� �!"#$% � �� �� �� ��

�

Usability properties
-Consistency
-Provide feedback
-Guidance
-Error prevention

Usability patterns
-User Modes
-Undo
-Multiple views

framework

Software Architecture Analysis of Usability 11

compare two or more candidate software architectures, the support for a particular
usage scenario must be expressed on an ordinal scale to indicate a relation between
the different candidates. (Which one has the better support?). If the analysis is
sufficiently accurate the results may be quantified, however even without
quantification the assessment can produce useful results. If the goal is to iteratively
design an architecture, then if the architecture proves to have sufficient support for
usability, the design process may be ended. Otherwise, architectural transformations
need to be applied to improve usability. Qualitative information such as which
scenarios are poorly supported and which usability properties or patterns have not
been considered may guide the architect in applying particular transformations. The
framework may then be used as an informative source for design and improvement of
the architecture’s support of usability.

5 Validation

In order to validate SALUTA it has been applied in three case studies:
• eSuite. A web based enterprise resource planning (ERP) system.
• Compressor. A web based e-commerce system.
• Webplatform. A web based content management system (CMS)
The goal of the case studies was twofold: first to conduct a software architecture
analysis of usability on each of the three systems and to collect experiences. Our
technique had initially only been applied at one case study and we needed more
experiences to further refine our technique and make it generally applicable. Second,
our goal was to gain a better understanding of the relationship between usability and
software architecture. Our analysis technique depends on the framework we
developed in [9]. Analyzing architectural designs in the case studies allowed us to
further refine and validate the framework we developed. As a research method we
used action research [27], we took upon our self the role of external analysts and
actively participated in the analysis process and reflected on the process and the
results.

These cases studies show that it is possible to use SALUTA to assess software
architectures for their support of usability. Whether we have accurately predicted the
architecture’s support for usability is answered by comparing our analysis with the
results of user tests that are conducted when the systems are implemented. These
results are used to verify whether the usage profile we created actually matches the
actual usage of the system and whether the results of the assessment fits results from
the user tests For all three cases, the usage profile and architecture assessment phase
is completed. In the case of the Webplatform, a user test has been performed recently.
In this article, we limit ourselves to highlighting some examples from the
Webplatform case study.

ECCOO develops software and services for one of the largest universities of the
Netherlands (RuG). ECCOO has developed the Webplatform. Faculties, departments
and organizations within the RuG are already present on the inter/intra/extra –net but
because of the current wild growth of sites, concerning content, layout and design, the
usability of the old system was quite poor. For the Webplatform usability was

12 Eelke Folmer, Jilles van Gurp, Jan Bosch

considered as an important design objective. Webplatform has successfully been
deployed recently and the current version of the RuG website is powered by the
Webplatform. As an input to the analysis of the Webplatform, we interviewed the
software architect and usability engineer, examined the design documentation, and
looked at the newly deployed RuG site. In the next few subsections, we will present
the four SALUTA steps for the Webplatform.

5.1 Usage profile creation

In this step of the SALUTA, we have cooperated with the usability engineer to create
the usage profile.
• Three types of users are defined in the functional requirements: end users, content

administrators and CMS administrators.
• Several different tasks are specified in the functional requirements. An accurate

description of what is understood for a particular task is an essential part of this
step. For example, several tasks such as “create new portal medical sciences” or
“create new course description” have been understood for the task “make object”,
because the Webplatform data structure is object based.

• No relevant contexts of use were identified for Webplatform. Issues such as
bandwidth or helpdesk only affect a very small part of the user population.

The result of the first three steps is summarized in Table 1.

Table 1. Summary of selected users, tasks for Webplatform

Users Tasks example
1 End-user Quick search Find course X

2 End-user Navigate Find employee X

3 Content Administrator Edit object Edit course description

4 Content Administrator Make object Create new course description

5 Content Administrator Quick search Find course X

6 Content Administrator Navigate Find phone number for person X

7 CMS Administrator Edit object Change layout of portal X

8 CMS Administrator Make object Create new portal medical sciences

9 CMS Administrator Delete object Delete teacher X

10 CMS Administrator Quick search Find all employees of section X

11 CMS Administrator Navigate Find section library

The next step is to determine attribute values for the scenarios. This has been done by
consulting the usability requirements and by discussing these for each scenario with
the usability engineer. In the functional requirements of the Webplatform only 30
guidelines based on Nielsen’s heuristics [17] have been specified. Fortunately, the
usability engineer in our case had a good understanding of the expected required
usability of the system. As an example we explain how we determined attribute
values for the usage scenario: “end user performing quick search”.

Software Architecture Analysis of Usability 13

First, we formally specified with the usability engineer what should be understood
for each attribute of this task. We have associated reliability with the accuracy of
search results; efficiency has been associated with response time of the quick search.
Then the usability requirements were consulted. A usability requirement that affects
this scenario states: “every page should feature a quick search which searches the
whole portal and comes up with accurate search results”. In the requirements, it has
not been specified that quick search should be performed quickly. However, in our
discussions with the usability engineer we found that this is the most important aspect
of usability for this task. Consequently, high values have been given to efficiency and
reliability and low values to the other attributes. For each scenario, numeric values
between one and four have been assigned to the usability attributes to express the
difference in priority. Table 2 states the result of the quantification of the selected
scenarios for Webplatform.

Table 2. Attribute priority table for Webplatform

5.2 Architecture description

For scenario evaluation, a list of usability patterns and a list of usability properties
that have been implemented in the system are required to determine the architecture’s
support for usability. This information has been acquired, by analyzing the software
architecture (see Figure 3), consulting the functional design documentation (some
specific design decisions for usability had been documented) and interviewing the
software architect using the list of patterns and properties defined in our framework.

One of the reasons to develop Webplatform was that the usability of the old system
was quite poor; this was mainly caused by the fact that each “entity” within the RuG
(Faculties, libraries, departments) used their own layout and their own way to present
information and functionality to its users which turned out to be very confusing to
users.

Users Tasks S L E R
1 End-user Quick search 2 1 4 3
2 End-user Navigate 1 4 2 3
3 Content Administrator Edit object 1 4 2 3
4 Content Administrator Make object 1 4 2 3
5 Content Administrator Quick search 2 1 4 3
6 Content Administrator Navigate 1 4 2 4
7 CMS Administrator Edit object 2 1 4 3
8 CMS Administrator Make object 2 1 4 3
9 CMS Administrator Delete object 2 1 4 3
10 CMS Administrator Quick search 2 1 4 3
11 CMS Administrator Navigate 1 2 3 4

14 Eelke Folmer, Jilles van Gurp, Jan Bosch

Fig. 4. Webplatform software architecture

A specific design decision that was taken which facilitates several patterns and
properties in our framework was to use the internet file system (IFS):
• Multiple views [10]]: The IFS provides an interface that realizes the use of objects

and relations as defined in XML. Using XML and XSLT templates the system can
provide multiple views for different users and uses on the server side. CSS style
sheets are used to provide different views on the client site, for example for
providing a “print” layout view but also to allow each faculty their own “skin” as
depicted in Figure 3.

• Consistency [10]: The use of XML/ XSLT is a means to enforce a strict separation
of presentation from data. This design decision makes it easier to provide a
consistent presentation of interface and function for all different objects of the
same type such as portals. See for example Figure 6 where the menu layout, the
menu items and the position of the quick search box is the same for the faculty of
arts and the faculty of Philosophy.

• Multichanneling [8]: By providing different views & control mappings for
different devices multichanneling is provided. The Webplatform can be accessed
from an I-mode phone as well as from a desktop computer.

Next to the patterns and properties that are facilitated by the IFS several other patterns
and properties were identified in the architecture. Sometimes even multiple instances
of the same property (such as system feedback) have been identified. Some properties
such as consistency have multiple aspects (visual/functional consistency). We need to
analyze the architecture for its support of each element of such a property A result of
such a detailed analysis for the property accessibility and the pattern history logging is
displayed in Table 3.

Software Architecture Analysis of Usability 15

Fig. 5. Provide multiple views/ & Visual/Functional Consistency.

Table 3.

� �

&�	�����'(���������%�

��
�� (����������	� ���������� ��	����
���)���������	������� �� �	�����

��������	�
����������	��������������������)�����*�����+���������

�	����������
���,����������)�������-.������������

��
����������	����
�������������������
����������/�����	�����	��������������

(�0�������	��������������)����������������)��
������
���	
	���
����� 	� ����������� ��� ������ 0������� 	���� ���)�� 	�� 	� �	�����

����	�������������������������*���������)��������	�	.���

&��������'�(��������������� �

• 1��	��������� ��

• 2�������	�����

�

2����� ��	������
� ��� ���)����� ��� ���� ���� ���)��� ������ �	��

���)���� 	� ������ ���� ��� (2���� ��� ������ ��)����� �	���� ���

����������3%��������	������

• �����	����	��4	�����

�

(� �������� ���� 1����� 5� �
����� �	�
�	
�6� �	��� 7��� ��/���� �	��

�����������	�
�	
��	�����������������

(�8)	������������������

5.3. Evaluate scenarios

The next step is to evaluate the architecture’s support for the usage scenarios in the
usage profile. As an example, we analyze usage scenario #4 “content administrator
makes object” from table 2. For this scenario it has been determined by which
patterns and properties, that have been identified in the architecture it is affected. It is
important to identify whether a scenario is affected by a pattern or property that has
been implemented in the architecture because this is not always the case. The result of
such an analysis is shown in a support matrix in Table 3 for two scenarios. A
checkmark indicates that the scenario is affected by at least one or more patterns or
properties. Some properties such as consistency have multiple aspects
(visual/functional consistency). For a thorough evaluation we need to analyze each
scenario for each element of such a property. The support matrix is used together with
the relations in the framework to find out whether a usage profile is sufficiently
supported by the architecture. The usage profile that we created shows that scenario
#4 has high values for learnability (4) and reliability (3). Several patterns and

16 Eelke Folmer, Jilles van Gurp, Jan Bosch

properties positively contribute to the support of this scenario. For example, the
property consistency and the pattern context sensitive help increases learnability as
can be analyzed from Figure 1. By analyzing for each pattern and property, the effect
on usability, the support for this scenario is determined. Due to the lack of formalized
knowledge at the architecture level, this step is very much guided by tacit knowledge
(i.e. the undocumented knowledge of experienced software architects and usability
engineers). For usage scenario #4, we have concluded that the architecture provides
weak support. Learnability is very important for this scenario and patterns such as a
wizard or workflow modeling or different user modes to support novice users could
increase the learnability of this scenario.

Table 4. Architecture support matrix

Usability patterns Usability properties Scenario num
ber

System
 Feedback

A
ctions for m

ultiple obj.

C
ancel

D
ata validation

H
istory Logging

Scripting

M
ultiple view

s

M
ulti C

hanneling

U
ndo

U
ser M

odes

U
ser Profiles

 W
izard

 W
orkflow

 m
odel

 E
m

ulation

 C
ontext sensitive help

 P
rovide feedback

 E
rror m

anagem
ent

 C
onsistency

 A
daptability

 G
uidance

 E
xplicit user control

 N
atural m

apping

 A
ccessibility

�

 M
inim

ize cognitive load

1 �
4 �

5.4. Interpret the results

The result of the assessment of the Webplatform is that three scenarios are accepted,
six are weakly accepted and that two scenarios are weakly rejected. The main cause
for this is that we could not identify sufficient support for learnability for content
administrators as was required by the usage profile. There is room for improvement;
usability could be improved if provisions were made to facilitate patterns and
properties that have not been considered. The usability requirement of consistency
was one of the driving forces of design and our analysis shows that it has positive
influence on the usability of the system. Apart from some general usability guidelines
[17] stated in the functional requirements no clearly defined and verifiable usability
requirements have been specified. Our conclusion concerning the assessment of the
Webplatform is that the architecture provides sufficient support for the usage profile
that we created. This does not necessarily guarantee that the final system will be
usable since many other factors play a role in ensuring a system’s usability. Our
analysis shows however that these usability issues may be repaired without major
changes to the software architecture thus preventing high costs incurring adaptive
maintenance activities once the system has been implemented.

Software Architecture Analysis of Usability 17

5.5. Validation

Whether the usage profile we created is fully representative for the required usability
is open to dispute. However, the results from the user test that has recently been
completed by the ECCOO is consistent with our findings. 65 test users (students,
employees and graduate students) have tested 13 different portals. In the usability
tests, the users had to perform specific tasks while being observed. The specific tasks
that had to be performed are mostly related to the tasks navigation and quick search in
our usage profile. After performing the tasks, users were interviewed about the
relevance of the tasks they had to perform and the usability issues that were
discovered. The main conclusions of the tests are:
• Most of the usability issues that were detected were related to navigation, structure

and content. For example, users have difficulties finding particular information.
Lack of hierarchy and structure is the main cause for this problem Although the
architecture supports visual and functional consistency, organizations themselves
are responsible for structuring their information.

• Searching does not generate accurate search results. This may be fixed by technical
modifications. E.g. tuning the search function to generate more accurate search
results. (This is also caused by that a lot of meta-information on the content in the
system has not been provided yet).

The results of this usability tests fit the results of our analysis: the software
architecture supports the right level of usability. Some usability issues came up that
where not predicted during our architectural assessment. However, these do not
appear to be caused by problems in the software architecture. Future usability tests
will focus on analyzing the usability of the scenarios that involve content
administrators. Preliminary results from these tests show that the system has a weak
support for learnability as predicted from the architectural analysis.

7. Conclusions

In this paper, we have presented SALUTA, a scenario based assessment technique
that assists software architects in designing a software architecture that supports
usability. SALUTA consists of four major steps: First, the required usability of the
system is expressed by means of a usage profile. The usage profile consists of a
representative set of usage scenarios that express the required usability of the system.
The following sub-steps are taken for creating a usage profile: identify the users,
identify the tasks, identify the contexts of use, determine attribute values, scenario
selection & weighing. In the second step, the information about the software
architecture is collected using a framework that has been developed in earlier work.
This framework consists of an integrated set of design solutions such as usability
patterns and usability properties that have a positive effect on usability but are
difficult to retrofit into applications because they have architectural impact. This
framework is used to analyze the architecture for its support of usability. The next
step is to evaluate the architecture’s support of usage profile using the information
extracted in the previous step. To do so, we perform support analysis for each of the

18 Eelke Folmer, Jilles van Gurp, Jan Bosch

scenarios in the set. The final step is then to interpret these results and to draw
conclusions about the software architecture. The result of the assessment for example,
which scenarios are poorly supported or which usability properties or patterns have
not been considered, may guide the architect in applying particular transformations to
improve the architecture’s support of usability. We have elaborated the various steps
in this paper, discussed the issues and techniques for each of the steps, and illustrated
these by discussing some examples from a case study. The main contributions of this
paper are:
• SALUTA is the first and currently the only technique that enables software

architects to assess the level of usability supported by their architectures.
• Because usability requirements tend to change over time and may be discovered

during deployment, SALUTA may assist a software architect to come up with a
more usable first version of a software architecture that might allow for more
“usability tuning” on the detailed design level. This prevents some of the high costs
incurring adaptive maintenance activities once the system has been implemented.

Future work shall focus on finalizing the case studies, refining the usability
framework and validating our claims we make. Preliminary experiences with these
three case studies shows the results from the assessment seem reasonable and do not
conflict with the user tests. In the future, we will not only focus on assessing with
SALUTA but also on using the framework for iteratively designing software
architectures with SALUTA.

Acknowledgments

This work is sponsored by the STATUS1 project under contract no IST-2001-32298.
We would like to thank the partners in the STATUS project and ECCOO for their
input and their cooperation.

References

[1] R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, NY,
1992.

[2] T. K. Landauer, The Trouble with Computers: Usefulness, Usability and Productivity., MIT
Press., Cambridge, 1995.

[3] J. Bosch, Design and use of Software Architectures: Adopting and evolving a product line
approach, Pearson Education (Addison-Wesley and ACM Press), Harlow, 2000.

[4] IEEE, IEEE Architecture Working Group. Recommended practice for architectural
description. Draft IEEE Standard P1471/D4.1, IEEE, 1998.

1 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in

its Information Society Technologies Program. The partners are Information Highway Group
(IHG), Universidad Politecnica de Madrid (UPM), University of Groningen (RUG), Imperial
College of Science, Technology and Medicine (ICSTM), LOGICDIS S.A.

Software Architecture Analysis of Usability 19

[5] N. Lassing, P. O. Bengtsson, H. van Vliet, and J. Bosch, Experiences with ALMA:
Architecture-Level Modifiability Analysis, Journal of systems and software, Elsevier, 2002,
pp. 47-57.

[6] E. Folmer and J. Bosch, Architecting for usability; a survey, Journal of systems and
software, Elsevier, 2002, pp. 61-78.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley and Son Ltd, New York, 1996.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns elements of reusable
object-orientated software., Addison -Wesley, 1995.

[9] L. Bass, J. Kates, and B. E. John, Achieving Usability through software architecture, 1-3-
2001.

[10] E. Folmer, J. v. Gurp, and J. Bosch, Investigating the Relationship between Usability and
Software Architecture , Software process improvement and practice, Wiley, 2003, pp. 0-0.

[11] J. Tidwell, Interaction Design Patterns, Conference on Pattern Languages of
Programming 1998, 1998.

[12] Brighton, The Brighton Usability Pattern Collection.
http://www.cmis.brighton.ac.uk/research/patterns/home.html

[13] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Addison Wesley
Longman, Reading MA, 1998.

[14] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, The
Architecture Tradeoff Analysis Method, Proceedings of ICECCS'98, 8-1-1998.

[15] W. Li and S. Henry, OO Metrics that Predict Maintainability, Journal of systems and
software, Elsevier, 1993, pp. 111-122.

[16] J. Nielsen, Heuristic Evaluation., in Usability Inspection Methods., Nielsen, J. and Mack,
R. L., John Wiley and Sons, New York, NY., 1994.

[17] J. Nielsen, Usability Engineering, Academic Press, Inc, Boston, MA., 1993.
[18] C. Wharton, J. Rieman, C. H. Lewis, and P. G. Polson, The Cognitive Walkthrough: A

practitioner's guide., in Usability Inspection Methods, Nielsen, Jacob and Mack, R. L., John
Wiley and Sons, New York, NY., 1994.

[19] R. Kazman, G. Abowd, and M. Webb, SAAM: A Method for Analyzing the Properties of
Software Architectures, Proceedings of the 16th International Conference on Software
Engineering, 1994.

[20] S. Lauesen and H. Younessi, Six styles for usability requirements, Proceedings of
REFSQ'98, 1998.

[21] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey, Human-Computer
Interaction, Addison Wesley, 1994.

[22] D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability Through
Product and Process., John Wiley and Sons, 1993.

[23] ISO, ISO 9241-11 Ergonomic requirements for office work with visual display terminals
(VDTs) -- Part 11: Guidance on usability., 1994.

[24] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Addison-Wesley, Reading, MA, 1998.

[25] J. v. Gurp and J. Bosch, Design Erosion: Problems and Causes, Journal of systems and
software, Elsevier, 3-1-2002, pp. 105-119.

[26] P. B. Kruchten, The 4+1 View Model of Architecture, IEEE Software, 1995.
[27] C. Argyris, R. Putnam, and D. Smith, Action Science: Concepts, methods and skills for

research and intervention, Jossey-Bass, San Francisco, 1985.

