
© 2007, Lenin Singaravelu Georgia Tech. 1

End-to-End Security of Information

Flow in Web-based Applications

Lenin Singaravelu

Joint Work with Calton Pu, Hermann Härtig, B. Kauer,

A. Boettcher, C. Weinhold and Jinpeng Wei

© 2007, Lenin Singaravelu Georgia Tech 2

Client Software Server Software

Internet

User Service Provider

� Untrusted Internet

� Use SSL/TLS

Server SW1

SP1

Server SW2

SP2

Motivation

SSL / TLS SSL / TLS

Large and Complex end point software with

multiple security vulnerabilities

e.g., Mozilla Firefox browser has over

2 million lines of code and averages

2 vulnerabilities per month

Web Service Compositions involve multiple service

providers operating at different security levels

gets(userInput);

strcpy(localbuf, networkInp);

setEncryptionKey(userConfig);

© 2007, Lenin Singaravelu Georgia Tech 3

Talk Outline

� Problem Statement

� AppCore Approach

� Client-side AppCore for https-based Applications

� Server-side AppCore for Web Service Platforms

� WS-FESec for Web Service Compositions

� Related Work

� Conclusion

© 2007, Lenin Singaravelu Georgia Tech 4

Terms and Definitions

� Security-Sensitive Information: Any piece of

information that the Business Logic or End-

user imposes confidentiality or integrity

requirements

� Trusted Components: Components that

operate in trustworthy manner

� Allowed access to plain-text sensitive data

� Untrusted Components: No constraints on

behavior

© 2007, Lenin Singaravelu Georgia Tech 5

• Authentication information

• Payment Information

• Premium information, e.g., real-time
stock quotes

• Information deemed sensitive by privacy
laws, e.g., medical information

• Business Secrets

Examples of Sensitive Information

© 2007, Lenin Singaravelu Georgia Tech 6

Flow of Sensitive Information

� On Network: sensitive information is
protected using security protocols such as
SSL
� Protects from snooping or message modification
attacks on the Internet

� On End-Points: Large and Complex software
used to handle sensitive information in
unprotected format

� Protocols assume end-point software is free from
vulnerabilities

© 2007, Lenin Singaravelu Georgia Tech 7

Flow of Sensitive Information

� Via Intermediate Service Nodes that provide value

added services in Web Service Compositions

� e.g., Google maps mashups, Amazon book search for

mobile devices

� Intermediate nodes must be allowed to selectively

read and modify messages

� SSL, TLS are coarse grained and point to point

� WS-Security currently does not support end-to-end

confidentiality in open environment

© 2007, Lenin Singaravelu Georgia Tech 8

Challenges in Protecting Sensitive

Information

� Security Problems

� Violation of Principle of Least Privilege

� Increasing Software Complexity

� Misbehaving Intermediate Services

� Usability Challenges

� Popularity of Legacy Software

© 2007, Lenin Singaravelu Georgia Tech 9

Security Problems: PoLP

� Security processing co-located with other

components

� Improves performance, as there are no security

boundaries to cross

� Components that do not require access to

sensitive data have access – Violates

Principle of Least Privilege

[Saltzer&Schroeder74]

© 2007, Lenin Singaravelu Georgia Tech 10

• Browsers contains multiple components: Parser, UI, security
module: All components have access to sensitive data
• In addition, extensions can also access contents of page

− addons.mozilla.org lists 870 extensions
• A malicious example: Attacker exploits buffer overflow vulnerability
in IE to install extension that maintains a list of bank sites and logs
keystrokes when user visits any of the listed sites [SANS]

© 2007, Lenin Singaravelu Georgia Tech 11

Security Problems: Software Complexity

(SoCx)

� Large and Complex End-Point software

� Sensitive and non-sensitive information handled by same

software

� Increased functionality => larger software

� Run-time Extension Mechanisms in some software

further increases complexity

� Examples: 1 MLOC for Mozilla v1.0, >2 MLOC for

Mozilla Firefox, 110KLOC for Web Service Platforms

© 2007, Lenin Singaravelu Georgia Tech 12

SoCx and Vulnerabilities

� Greater software complexity
implies more software errors
� Larger code base is harder to

analyze, test and verify

� Software complexity metrics such
as LOC, Cyclomatic Complexity,
Henry & Kafura’s Information Flow
metric exhibit positive correlation
with software errors [Shepperd93]

� ~2 vulnerabilities per month with IE
and Firefox [Secunia]

� Arbitrary code execution, Security
bypass vulnerabilities in Web
Service Platforms [Secunia]

Function size vs. Bugs

Chou et al. SOSP 2001

© 2007, Lenin Singaravelu Georgia Tech 13

Usability Challenges

� Popularity of Existing Interfaces

� Users familiar with GUI of browsers

� Large number of legacy programs dependent on legacy
interfaces (e.g., interface between application-level software and
middleware)

� Remote interfaces such as HTTP widely used over the Internet

� Users/Developers used to software with large number of features

� App. Customization is a desirable feature: 2295 extensions for
Firefox

� Extension architecture of WSPs allows developer to add features
such as load balancing, logging, etc…

� Cannot Completely Avoid Reuse of Legacy Code & Interfaces

© 2007, Lenin Singaravelu Georgia Tech 14

Opportunities

� Web-based applications exchange

information with varying sensitiveness

� Online Banking Session: login+password,

Account Status Information, Account

Modification information

� Banks recognize this difference: Transaction

Authorization Numbers

© 2007, Lenin Singaravelu Georgia Tech 15

Funds Transfer Page of Deutsche Bank

User Sets Transfer Parameters

during previous Interactions

One Time TAN Number to

Authorize Transfer

© 2007, Lenin Singaravelu Georgia Tech 16

…Opportunities

� Use different components to handle

information with differing sensitivities

� Potentially reduces functionality of software

handling sensitive information

© 2007, Lenin Singaravelu Georgia Tech 17

Solution: AppCore Approach

� Split Application into Trusted and Untrusted Parts
� Trusted Part consists of components that require access to

sensitive data

� Hide Sensitive data from untrusted part

� Execute Trusted and Untrusted parts in separate protection
domains

Goal: Restrict the Flow of Security-Sensitive
Information to Components that Need Access

Approach

© 2007, Lenin Singaravelu Georgia Tech 18

Design Goals

� Identify Trusted Components and Limit Flow

of Sensitive information to such components

� Reduce complexity of Trusted Components

� Reuse Legacy Code as far as possible

� Reuse Legacy Interfaces as far as possible

� Minimize Performance Overheads

© 2007, Lenin Singaravelu Georgia Tech 19

Addressing Security Problems

� PoLP: We hide sensitive information from

components that do not need access

� SoCx: Trusted Components a subset of

complete application

� Expect diminished complexity

© 2007, Lenin Singaravelu Georgia Tech 20

Applications of AppCore Approach

� E-Commerce Transaction Client AppCore

� Reduced complexity by over order of magnitude

� VPN AppCore and E-Mail signer AppCore

reduce complexity by 3X to 5X

� Similar approaches employed to reduce

complexity in system services, e.g., SSH

[Provos03] and Device Drivers

[Ganapathy07]

© 2007, Lenin Singaravelu Georgia Tech 21

Timeline

� Problem Statement

� AppCore Approach

� Client-side AppCore for https-based Applications

� Server-side AppCore for Web Service Platforms

� WS-FESec for Web Service Compositions

� Related Work

� Conclusion

© 2007, Lenin Singaravelu Georgia Tech 22

https-Based Applications

� Online banking, electronic commerce …
� Use HTTP over SSL to protect information flow
over network

� Client application of choice, the Browser,
contains multiple security vulnerabilities

� Service Providers recognize this and use
one-time keys, dual-factor authentication,
mouse input instead of keyboard input etc…
� Attackers run sophisticated malware to bypass
such systems: e.g., Screen Scraper [APWG05]

© 2007, Lenin Singaravelu Georgia Tech 23

Client-Side AppCores for https-based

Applications

� Leverages fact that sensitiveness of information in

https-based applications differs

� e.g., Online banking application exchanges 3 types

of information

� Non-sensitive: bank front page, etc..

� Low-Sensitivity: Sensitive information but requires lot of

functionality: e.g.,Account status with graphs, spreadsheets

� High-sensitivity: Information that leads to irrevocable

account modifications, e.g., TANs leading to funds transfer

� Use AppCore for High-sensitivity information, legacy

applications for rest

© 2007, Lenin Singaravelu Georgia Tech 24

Challenges

� Reusing Legacy Code and Interfaces

� Minimize modifications to browser

� Reuse HTTP protocol

� No Explicit labeling of information

� Flexibility in use of AppCore

� e.g., Use AppCore for high-sensitivity information

on home machine, but use AppCore even for low-

sensitivity information on public access machines

© 2007, Lenin Singaravelu Georgia Tech 25

AppCore

� Use a https proxy to trap all incoming

messages

� Minimal modification to browser (proxy settings)

� Proxy determines sensitiveness of messages

� Sensitive messages forwarded to a small and

simple viewer (Trusted Viewer)

� Rest of messages sent to legacy browser

� Legacy browser runs as untrusted application

© 2007, Lenin Singaravelu Georgia Tech 26

System Architecture: BLAC

© 2007, Lenin Singaravelu Georgia Tech 27

Inferring Sensitiveness of Information

� Sensitiveness inferred from string patterns

� Also includes strings that result in generation of

sensitive user input

� Patterns can be specified by end-user or web

server

� Flexible use of Trusted Viewer

© 2007, Lenin Singaravelu Georgia Tech 28

Implementation

� Implemented on top of the Nizza Security

Architecture [Härtig02]

� L4 microkernel

� L4Env provides system services such as naming,

window manager, device manager

� https proxy and Trusted Viewer execute

directly on top of L4 as trusted processes

� Browser executes as untrusted process on

top of L4Linux, a paravirtualized legacy OS

© 2007, Lenin Singaravelu Georgia Tech 29

Evaluation: Security Properties

� Flow of sensitive information is limited to

https Proxy and Trusted Viewer

� Vulnerable browsers or malicious extensions

cannot access sensitive information

� Trusted Viewer and https Proxy are small and

simple components

� Makes exhaustive testing or formal analysis more

feasible

© 2007, Lenin Singaravelu Georgia Tech 30

Software Complexity Reductions

533,3003,606,00015,790118,900Total

328,3002,208,000
Mozilla

Firefox
2905,000

Trusted

Viewer
Application

--
-

1,90013,600
https

Proxy
https Proxy

140,3001,015,000X Server11,30086,300L4EnvMiddleware

65,000383,000
Linux

Kernel
2,30014,000L4OS

MCCLOCCompositionMCCLOCComposition

LinuxBLAC
Component

© 2007, Lenin Singaravelu Georgia Tech 31

Performance Evaluation

� Use a trace from 3 banks and Amazon.com

� Sources of Overhead

� Software executing on virtualized hardware: 5-

10% for L4 [Härtig97]

� https Proxy: Use simple https clients and servers

to measure and compare overhead

© 2007, Lenin Singaravelu Georgia Tech 32

Page Access Times

� Page access times show 2X slowdown

� Most pages retrieved well within 2 seconds, which

satisfies over 75 % of users [Jupiter Research]

© 2007, Lenin Singaravelu Georgia Tech 33

Code and Interface Reuse

� BLAC works with unmodified HTTP & SSL

protocols

� BLAC reuses browser interface as much as

possible

� User can limit number of pages handled by

Trusted Viewer by configuring the https proxy

© 2007, Lenin Singaravelu Georgia Tech 34

Discussion

� Real world web servers have multiple

complications

� Non-https login pages, no support for Trusted

Computing, convoluted html format

� Server-side support can simplify BLAC

� e.g., explicit labeling of data sensitivities simplifies

proxy

© 2007, Lenin Singaravelu Georgia Tech 35

Timeline

� Problem Statement

� AppCore Approach

� Client-side AppCore for https-based Applications

� Server-side AppCore for Web Service Platforms

� WS-FESec for Web Service Compositions

� Related Work

� Conclusion

© 2007, Lenin Singaravelu Georgia Tech 36

Web Service Platforms (WSPs)

� Provide Middleware support for Service

Oriented Computing

� e.g., Axis, .NET, WebSphere Application Server

� Increasingly used in security-sensitive

services, e.g., PayPal’s payment processing

web services

� Employ security protocols such as SSL, TLS

and WS-Security to protect information flow

© 2007, Lenin Singaravelu Georgia Tech 37

W3C’s Web Services Architecture

� WSPs implement W3C’s
web services architecture

� Main components are
� Communication protocols

(HTTP)

� Message Wrapping (SOAP)

� WS-* extensions

� Publish and Discovery
mechanisms

� No directions on
implementation strategy
� Security Processing co-

located with other types of
processing

© 2007, Lenin Singaravelu Georgia Tech 38

Axis2 WSP

� Popular Open Source WSP

� Implements a Data-flow model for message

processing

� Each Message is assigned to a thread.

� Thread calls appropriate handlers in

sequence for transport, SOAP, WS-*

processing and application code

© 2007, Lenin Singaravelu Georgia Tech 39

Information Flow in Axis2
One of these handlers is a security handler

� All Handlers execute in same protection domain and same address space

� Security Handler controlled by configuration file and global variables
� Both accessible to all handlers

© 2007, Lenin Singaravelu Georgia Tech 40

Security Problems in WSPs

� Large and Complex Software, over 110

KLOC

� Support for extensions and configuration files

further complicates analysis and testing

� Contain multiple security vulnerabilities [Secunia]

� Extensions have access to sensitive data

� e.g., Indirect access in the Axis2 WSP

© 2007, Lenin Singaravelu Georgia Tech 41

PoLP Problem in Web Service Platforms

outparam = ctx0.getAxisConfiguration().

getParameter("OutflowSecurity");

if (outparam !=null){

ome = outparam.getParameterElement();

itor = ome.getFirstElement().getChildElements();

while (itor.hasNext()){

attr = (OMElement) itor.next();

if("encryptionUser".equals(attr.getLocalName())){

attr.setText(“weak_key");

}

}

All Extensions have access to security configurationMalicious Extensions can disable security processing

or specify use of weak keys

© 2007, Lenin Singaravelu Georgia Tech 42

Applying AppCore Approach to WSPs

� Identify Trusted Components

� Compose them into AppCore (T-WSP)

� Modify legacy WSP (U-WSP) to call T-WSP to

operate on sensitive data

� Limit flow of sensitive data to T-WSP

� Split application-level code into trusted and

untrusted part

© 2007, Lenin Singaravelu Georgia Tech 43

Identifying Trusted Components

� Key Assumption: Sensitive information is protected
using WS-Security
� Note: We do not have to infer sensitiveness of data as in

BLAC.

� Rely on W3C specifications and Axis2 source
code and documentation to analyze WSP

� Security Related Extensions such as WS-Security,
WS-Trust and their config. files are Trusted
Components

� Message Splicer for controlling flow of information
(explained later)

© 2007, Lenin Singaravelu Georgia Tech 44

Untrusted Components

� Components that do not need access to sensitive

data

� We make no assumptions about the properties of these

components

� WS-* extensions such as WS-Addressing, WS-

ReliableMessaging, WS-ResourceFramework, WS-

Coordination, WS-AtomicTransaction etc…

� SOAP processing and transport layer processing

� Untrusted portion of application

© 2007, Lenin Singaravelu Georgia Tech 45

ISO-WSP Architecture

Insert RMI Calls. Serialize and Deserialize parameters

© 2007, Lenin Singaravelu Georgia Tech 46

Securing Information Flow

Access only to Protected Sensitive InformationSecurity libraries replace protected

sensitive data with plain text data

Access only to Dummy Data items

Message Splicer replaces sensitive

data items with dummy data items

AND adds a unique token

© 2007, Lenin Singaravelu Georgia Tech 47

Application Support for ISO-WSP

� Information Flow Split into two parts
� => Application too has to be split

� Example: Payment Processing Web Service

PResults ProcessPayment(
OrderInfo ord,

CustomerInfo cinf,
CreditCard cc);

© 2007, Lenin Singaravelu Georgia Tech 48

Why Split Applications?

public class CreditCard{

private String ccNum, Name, zip;

private int expiryMon, expiryYr;

/* Getters,Setters */

public String getCcNum(){...}

public void setCcNum(String num){...}

/* Validate Card*/

public boolean validate(){...}

/*Charge Card and return a Txn ID*/

public String chargeCard(float amount) {...}

/* Additional Functions */ ...

}

Information Leak

© 2007, Lenin Singaravelu Georgia Tech 49

Secure Functional Interface (SFI)

� Interface to Sensitive Objects that is available to untrusted code
� Provides a restricted view of sensitive objects

� Designed by the developer

Example:
/* Classname and Namespace*/

class:=edu.gatech.cc.pp.CreditCard

/* Interface */

interface CCsfi{

boolean validate();

String chargeCard(float amount);

}

© 2007, Lenin Singaravelu Georgia Tech 50

Generate Trusted and Untrusted Code

� Trusted Code handles actual data

� Untrusted Code gets dummy data items +

unique token

� Token is a capability to access sensitive data

items

� Untrusted Code uses SFI to operate on

sensitive data

© 2007, Lenin Singaravelu Georgia Tech 51

SFI Example: Untrusted Code

public class CreditCardUnt extends CreditCard {

private String sfiID;

private CCsfi stub = null;

public boolean initStub(){…}

/* override the methods defined in SFI */

public boolean chargeCard(float amount) {

if(sfiID != null) {

initStub();

stub.validate(sfiID, amount);

}else{

super.validate();

}

}

}

RMI Call. Pass token along

with other parameters

© 2007, Lenin Singaravelu Georgia Tech 52

Developer Input to Port Apps

� Specify SFIs
� Generate Trusted and Untrusted Code

� Code to interface Trusted application with T-
WSP

� Parameters for Message Splicer
� Instances of dummy objects, e.g., Credit card with
invalid numbers

� Change serializers and deserializers
� Modify few lines of code

� Input validation code for SFI functions

© 2007, Lenin Singaravelu Georgia Tech 53

Implementation Details

� Implement a T-WSP for Apache Axis2
� Contains a WS-Security Implementation +
Message Splicer

� Modify Axis2 to perform RMI for WS-Security
processing
� Serialize and Deserializers for SOAP message

� ~800 New or Modified LOC

� Implement Payment Processing Service, and
port the RUBiS web service
� Cost of porting discussed later

© 2007, Lenin Singaravelu Georgia Tech 54

Payment Processing Service

� ISO-WSP adds 7.6 ms overhead (~19%)

� 5 ms in the WSP, rest in application

� Application level costs include

� Deserializing twice – in trusted and untrusted part

(~1.5ms)

� Two RMI calls for charging card and cleaning up state

on trusted part (~0.8 ms)

© 2007, Lenin Singaravelu Georgia Tech 55

Performance Impact

� Few ms is small compared to hundreds of ms
response time of real-world web services [Kim04]

� ISO-WSP only affects flow of sensitive data

� By separation of concerns in interface, impact can
be minimized

� E.g., Split interface into authentication interface and
Functional Interface
� Auth interface uses T-WSP, rest use U-WSP

� T-WSP removed from performance critical path

� e.g., RUBiS has 6 functions handling sensitive data and 14
handling non-sensitive data

© 2007, Lenin Singaravelu Georgia Tech 56

Security Improvements

� Only T-WSP and trusted part of application have

access to sensitive data

� Reduces software complexity of WSP by 5X (<

20KLOC to test/verify)

� Importantly, Most of functionality of legacy WSPs is

retained

6,05039,2105,18024,1007,930MCC

19,360110,83016,90070,35023,580SLOC

T-WSPWSP-TotalWS-SecurityExtensionsAxis2Module

© 2007, Lenin Singaravelu Georgia Tech 57

Cost of Porting

� Port Payment Processor and RUBiS web services

� Majority of porting effort focussed on interface

between T-WSP and Application

� Can be further reduced by using code generators similar to

WSDL2Java.sh

49 (<1%)28129RUBiS

40 (13%)3235Payment

Processor

Total

(% Modified)

Trusted

Portion

Untrusted

Portion

SFIService

Does not include actual payment processing

operations, e.g., charge credit card operations

© 2007, Lenin Singaravelu Georgia Tech 58

Code and Interface Reuse

� ISO-WSP reuses legacy WSP for non-sensitive
tasks
� Developers retain access to most functionality

� Message Splicer adds and removes tokens
transparently w.r.t remote application
� No changes to remote interface

� Interface between U-WSP and untrusted application
is retained
� New interface between T-WSP and trusted apps

� Reuse legacy application level code through
inheritance

© 2007, Lenin Singaravelu Georgia Tech 59

Discussion: Applicability to Other WSPs

� Easy to port to other WSPs

� Naïve mechanism: Source code access not
required
� T-WSP functions as a proxy WSP (similar to https
proxy in BLAC)

� Optimized approach: Modify legacy WSP to
invoke T-WSP

� Requires:

� Serialization/Deserialization of SOAP messages

� Remote Invocation Mechanism

© 2007, Lenin Singaravelu Georgia Tech 60

Timeline

� Problem Statement

� AppCore Approach

� Client-side AppCore for https-based Applications

� Server-side AppCore for Web Service Platforms

� WS-FESec for Web Service Compositions

� Related Work

� Conclusion

© 2007, Lenin Singaravelu Georgia Tech 61

Web Service Compositions

� Terminology: Data producing services, data
consumers, and Intermediate services

� Combine multiple services transparently to provide a
value added service
� e.g., overlaying GPS data of bus or apartment listings on

top of a Map service, Collecting auction or for sale listings
of books from multiple sites, …

� Rising in popularity due to web service interfaces
provided by big service providers:
� e.g., eBay, Google, Yahoo, Amazon, PayPal all provide

interesting services

� Yahoo Pipes: an example of user-driven composition

© 2007, Lenin Singaravelu Georgia Tech 62

Security Problems in Compositions

� Traditional Interaction: Consumer talks directly to

data producing service

� In Compositions: Consumer talks to intermediate

services

� Intermediate services need read/write access to portions of

messages

� => Consumer now has to trust all intermediate services

� Web services operate in open environment

� Not possible to trust or even know of all services involved

in composition

© 2007, Lenin Singaravelu Georgia Tech 63

Example: An Electronic Prescription

System (EPS)

� www.pharmacychecker.

com, www.nyagrx.com

compare price of

individual drugs

� EPS prices complete

prescription (Rx)

� Adds aggregator

service

� Compares prices,

shipping options, etc…

© 2007, Lenin Singaravelu Georgia Tech 64

Data Format of Electronic Prescription

Demographics

Clinical Decision Support

Rules Base

Other Details

Prescriber

Prescription: Drug List

Drug Related Details

Insurance Details

Optional Information

Source: eHealth Initiative Executive Summary 2004.

Patient

Information

Drug

Information

Miscellaneous

Information

Physician

Information

© 2007, Lenin Singaravelu Georgia Tech 65

Security Requirements for EPS

� Confidentiality Requirements:
� Patient and Physician have access to complete
Rx

� Pharmacy that fills the Rx gets access to patient
information

� Integrity Requirements:
� Pharmacies must be able to verify signature on
Rx

� Patient must be able to verify price of Rx as
specified by each pharmacy

© 2007, Lenin Singaravelu Georgia Tech 66

Usability Requirements

� Pharmacy must be able to look at list of

drugs, dosage, etc…

� Aggregator and Pharmacy services must be

able to look at coarse-grained patient

address information

� Aggregator must be able to look at price of

Rx

� Simple modifications might be allowed: e.g.,

change number of items desired

© 2007, Lenin Singaravelu Georgia Tech 67

Open Environment

� Large number of pharmacies on Internet

� Patient does not know and might not trust some of

them

� Pharmacies do not know of all aggregator

services

� Some aggregator services might be fraudulent,

e.g., prefer one pharmacy to another

© 2007, Lenin Singaravelu Georgia Tech 68

WS-FESec

� Uses Fine-Grain Signatures and Encryption

� Requires web service developer input to classify

data items

� Leverages WS-Security for cryptographic

operations

� Extends WS-Security specification to better

support open environments

© 2007, Lenin Singaravelu Georgia Tech 69

Integrity Protection using WS-FESec

� Integrity Groups (IntG): Groups of data items that are
relatively independent from rest of message

� e.g., each item in listing below is independent from rest of items,
list of drugs in a Rx

� Developer specifies IntGs for a service

� Each IntG signed separately

� => Parts of message can be modified without invalidating the
complete message

© 2007, Lenin Singaravelu Georgia Tech 70

Confidentiality Protection

� Confidentiality Groups (ConfG): Group of

items with same confidentiality requirements

� i.e., Items that can be seen by same set of

service providers

� e.g., list of drugs can be seen by all pharmacies,

however, patient information can be seen only by

one pharmacy => 2 separate ConfGs

� Each ConfG encrypted with separate key

� But key distribution in open environment?

© 2007, Lenin Singaravelu Georgia Tech 71

Demographics

Clinical Decision Support

Rules Base

Other Details

Prescriber

Prescription: Drug List

Drug Related Details

Insurance Details

Optional Information

Key Distribution

� Each Color represents a

ConfG

� Drug Information should be

available to all pharmacies

� Encrypt each ConfG with a

separate key

� WS-Security encode key

information in a KeyInfo

structure

� e.g., ConfG key is

encrypted with the public

key of pharmacies

© 2007, Lenin Singaravelu Georgia Tech 72

Key Distribution - II

� Limitations of KeyInfo: Only one KeyInfo per

encryption

� => All recipients of a particular piece of data must

share the same secret

� For Drug Information: All Pharmacies must

understand the same KeyInfo structure

� => pharmacies share the private key.

� Not a feasible option in open environment

� Solution: Allow multiple KeyInfo structures

© 2007, Lenin Singaravelu Georgia Tech 73

Key Distribution - III

� Insufficient knowledge of Recipients

� e.g., New online pharmacy unknown at message

generation time

� Large number of potential recipients, e.g.,

thousands on online pharmacies

� Cannot have KeyInfo for each recipient

� Add CallbackReference to key types

� Requires recipient to invoke the given URL to get

key information and decrypt the message

© 2007, Lenin Singaravelu Georgia Tech 74

Callback Reference Example

<ds:KeyInfo Id=”…” xmlns:ds=”…”>

<wsse:SecurrityTokenReference wsu:Id=”…”
wsse:TokenType=CallbackReference>

<fesec:CallbackReference

URI=http://rxws.com/eps/Auth

fesec:AuthMechanism=UsernameToken

fesec:MsgID=”0xRXID145”/>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

URL to contact to get the key information

Authentication Mechanism to be employed to retrieve the key

Parameters to use to retrieve the key

© 2007, Lenin Singaravelu Georgia Tech 75

Evaluation: Security Properties

� Model Web Service compositions as a lattice

[Denning76]

� Data items in a message have security classification

level (say Ld)

� Services and Clients have classification (say Lsc)

� Access is allowed only if Lsc dominates Ld.

� Challenge: Open environment of web services

implies no uniform classification mechanism

© 2007, Lenin Singaravelu Georgia Tech 76

Modeling Compositions as a Lattice

� Introduce two new levels:

� Low: All unprotected data

� High: Imaginary level that dominates all known levels

� Each data producing web service has its own lattice

� However, all of them share same High and Low levels

� Naïve combination: Attach all Lows and Highs to get

lattice

� Inefficient, but can model web service compositions on the

Internet

© 2007, Lenin Singaravelu Georgia Tech 77

WS-FESec for Lattice

� Each ConfG is a level in a lattice (Ld)

� Recipients possess one or more labels (Lsc)

� Data producing web service determine labels

of recipients

� e.g., using Authorization mechanisms

� Key distribution in WS-FESec ensures that

key is available only if Lsc dominates Ld

© 2007, Lenin Singaravelu Georgia Tech 78

A Simple Classification System For EPS

Demographics

Clinical Decision Support

Rules Base

Other Details

Prescriber

Prescription: Drug List

Drug Related Details

Insurance Details

Optional Information

Patient

Pharm

Patient

Patient

Low

Pharm

Patient

High

� Initially, Patient &
Physician have
Patient Label

� Later on, one
pharmacy gets
Patient Label

© 2007, Lenin Singaravelu Georgia Tech 79

Performance

� Modified WSS4J library to
perform multiple signatures
and encryption per
message

� Evaluate using a simple
stock quote service

� 20 ms overhead per
additional signature, 22 ms
per encryption

� Digital signatures contribute
around 15 ms of overhead

� Can be reduced by
employing symmetric
encryption for KeyInfo, e.g.,
WS-SecureConversation

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Quotes Per Message

R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
)

Plain

Body: 1 Sig

WS-FESec: 1 Sig per Quote

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
Quotes Per Message

R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
)

Plain

Body: 1 Key

WS-FESec:Single Channel

WS-FESec: Multi-Channel

© 2007, Lenin Singaravelu Georgia Tech 80

Using WS-FESec in Compositions

� Encryption by WS-FESec modifies message

format

� Intermediate services must be capable of working

with partially encrypted messages

� WS-FESec can be easily integrated with

compositions languages, e.g., BPEL4WS

� Requires ability to manipulate WS-Security

headers

© 2007, Lenin Singaravelu Georgia Tech 81

Limitations of WS-FESec

� Fine-grain signatures fail when messages are

completely modified

� e.g., Text to Speech service invalidates all signatures

� WS-FESec does not address confinement, e.g., An

authorized web service can release sensitive

information

� Trustworthy computing in conjunction with ISO-WSP

can provide better guarantees

� e.g., allowing only a portion of web service access to

sensitive information and using Trusted Computing

hardware for remote attestation

© 2007, Lenin Singaravelu Georgia Tech 82

Timeline

� Problem Statement

� AppCore Approach

� Client-side AppCore for https-based Applications

� Server-side AppCore for Web Service Platforms

� WS-FESec for Web Service Compositions

� Related Work

� Conclusion

© 2007, Lenin Singaravelu Georgia Tech 83

Related Work

� SSL, TLS, WS-Security provide protection on
network

� End-Point Software can be protected in multiple
ways

� Protection From Malicious Software:
� Trusted Computing (TC): Use hardware support to ensure

software integrity

� Integrity Measurement Architecture [Sailer04] extends TC
support to include configuration files and runtime
extensions

� WS-Attestation [Yoshihama05] and Trusted Web Service
[Song06]

� Complex software still runs on TC hardware => runtime
vulnerabilities compromise system

© 2007, Lenin Singaravelu Georgia Tech 84

Related Work - II

� Securing Software from vulnerabilities

� Defenses against buffer overflow, format string [Lhee03]

� CCured [Necula02], Incorporating authorization policy
enforcement in existing code [Ganapathy07]

� Address Space Randomization[Bhatkar05], NVariants[Cox06]

� AppCore reduces code base that needs to be protected: static
analysis is more efficient and run time protection is less costly

� Information Flow Restriction: Reduces impact of attacks

� Capability-based systems – Hydra & Protected Data Paths,
MACs - Asbestos, ABAC – Polaris, Language based Information
Flow Analysis [Sabelfeld03]

� Orthogonal to AppCores: Since AppCores have lower
functionality requirements, easier to constrain them

© 2007, Lenin Singaravelu Georgia Tech 85

Related Work - III

� Refactoring Software

� Privilege Separation[Provos03], Proxos [TaMin06]

� Middleware Refactoring for customization [Zhang03]

� AppCore approach similar, but more emphasis on

functional simplification and reusing interfaces

� Browser Defenses

� VMware’s browser appliance, Tahoma [Cox06] use

separate VM for browser instances

� Place functional restrictions on browsers for “complete”

sessions: AppCore does not restrict browser behavior

© 2007, Lenin Singaravelu Georgia Tech 86

Related Work IV

� Security in Web Service Compositions

� Reputation-based systems [Yang05], trusted third party-

based systems [Carminati05] to gauge trustworthiness

� Decentralized Orchestration [Chafle05] to control flow of

information

� Security Authorities [Sedukhin03] to enforce end-to-end

security

� WS-FESec is designed to handle open

environments, specifically to handle uncertainties

regarding recipients

© 2007, Lenin Singaravelu Georgia Tech 87

Summary

� Presented the AppCore approach to tackle the problem of large

and complex software

� Split software into small trusted (AppCore) and large, legacy

untrusted part.

� AppCore has access to sensitive information and uses legacy part to

perform non-sensitive operations

� Significant reductions in complexity attainable with moderate

overheads

� Design and Implementation a client-side AppCore for https-

based applications

� Reuses legacy browser transparently for non-sensitive

interactions

� Works with existing HTTP and SSL protocols

© 2007, Lenin Singaravelu Georgia Tech 88

… Summary

� Design and Implementation of a server-side AppCore for web
services middleware

� Security sensitive functionality isolated in T-WSP and trusted part
of application

� Simplify porting of existing applications by proposing SFIs

� Reuse legacy code for non-sensitive tasks

� Message Splicer maintains conformity with external interface

� WS-FESec: An end-to-end security framework for web
service compositions
� Specifically designed to work in an open environment

� WS-FESec supports lattice model of secure information flow

� Overhead of few tens of milliseconds per signature and
encryption

© 2007, Lenin Singaravelu Georgia Tech. 89

Questions?

