End-to-End Security of Information

Flow in Web-based Applications

Lenin Singaravelu

Joint Work with Calton Pu, Hermann Hartig, B. Kauer,
A. Boettcher, C. Weinhold and Jinpeng Wei

© 2007, Lenin Singaravelu Georgia Tech. 1

Large and Complex end point software with

MOt Web Service Compositions involve multiple service
providers operating at different security levels

2 vulnerabilities per month

gets(userinput);
strcpy(localbuf, networkinp);
setEncryptionKey(userConfig);

SP2 SP1
Server SW2 Server SW1

= Untrusted Internet
= Use SSL/TLS

e

© 2007, Lenin Singaravelu Georgia Tech 2

Talk Outline

Problem Statement

AppCore Approach

o Client-side AppCore for https-based Applications
a Server-side AppCore for Web Service Platforms

WS-FESec for Web Service Compositions
Related Work

Conclusion

© 2007, Lenin Singaravelu Georgia Tech

Terms and Definitions

Security-Sensitive Information: Any piece of
information that the Business Logic or End-
user imposes confidentiality or integrity
requirements

Trusted Components: Components that
operate in trustworthy manner

o Allowed access to plain-text sensitive data

Untrusted Components: No constraints on
behavior

© 2007, Lenin Singaravelu Georgia Tech

Bl Eob Vew Heloy Prolnoykn Took Hep LI by Eonw, H1MF b | SehEORE o SonMTE rTy | Monr48RF G0 | Tue RFOOTh) Wed BIYF R

R ;
mln| | [l e et servce wnapie B

| Feysoe | -

Saner Transaoron (5
1 25,00 USD
Subtotal; S$39.00 USD
Thppng & Hendng: S 0E LS
Tadal st EI500 USD

i Pay With PayPsl

AN | | rghecd Saaiea =3

Crudit or Dubit Cerd Isformatios

TFaeE Mame) |

[@n & mpomars on card)

Lawk Mama:
a5 & appears an cand} Fowpad E!HHI‘HI!H"
5

“20F Codei

‘Is this year shipping 2 9ee, b = the same az

FET: Sat D3R CEST: Sat 1250 1 I5T: Sk 11213 Koz Sun 0=

Flow of Sensitive Information

On Network: sensitive information is

protected using security protocols such as
SSL

0 Protects from snooping or message modification
attacks on the Internet

On End-Points: Large and Complex software

used to handle sensitive information in

unprotected format

o Protocols assume end-point software is free from
vulnerabilities

© 2007, Lenin Singaravelu Georgia Tech

Flow of Sensitive Information

Via Intermediate Service Nodes that provide value
added services in Web Service Compositions

o e.g., Google maps mashups, Amazon book search for
mobile devices

Intermediate nodes must be allowed to selectively
read and modify messages

SSL, TLS are coarse grained and point to point

WS-Security currently does not support end-to-end
confidentiality in open environment

© 2007, Lenin Singaravelu Georgia Tech

Challenges 1n Protecting Sensitive
Information

Security Problems

o Violation of Principle of Least Privilege
o Increasing Software Complexity

o Misbehaving Intermediate Services

Usability Challenges
o Popularity of Legacy Software

© 2007, Lenin Singaravelu Georgia Tech

Security Problems: Pol.P

Security processing co-located with other
components

o Improves performance, as there are no security
boundaries to cross

Components that do not require access to

sensitive data have access — Violates

Principle of Least Privilege

[Saltzer&Schroeder74]

© 2007, Lenin Singaravelu Georgia Tech

1N et - PayPal - Mas y
Be . fdt Vew Hgloy Prolneykn Took Hep L e Baoewy, HIMF 00 | Seh®ORF S Sond MTF Py | Mone 48RP G50 | Tue HTF 07T | Wedk S1YF R
"":F- = E E@- e pvypmd. oo =i el j:“';."; ':mwl:m —)

LM) A) a1 57 3 it W (] g St]) e 8 e) e L e

Wikimedia Foundation, Inc. | " el | -

Crudit or Dubit Cerd Isformatios

JFarE Mame) |
[@n & mpomars on card)

‘Lmwk Marme:
(45 & apoeans an card} W’ -
Card TYie | L. | #

vCaerdl Mumbize: T

HExptradion Dain: | gy ..." oMIT =
‘Card Secmy Code|

‘ihat'm thw?

Hilling Address
‘Adfalreas Ling 1)
Address Line 2

BB =l
S20P Codeg
‘I this yomar whipping @ ves, it = the same as my shippng addreas
sbdeesst - i

FE- SatDESR (ST Sab 133 ¢ ISF: Sek 11233 Foe: Sun 032 Corm !-I.plpi.mi

Security Problems: Software Complexity
(SoCx)

Large and Complex End-Point software

o Sensitive and non-sensitive information handled by same
software

o Increased functionality => larger software

Run-time Extension Mechanisms in some software
further increases complexity

Examples: 1 MLOC for Mozilla v1.0, >2 MLOC for
Mozilla Firefox, 110KLOC for Web Service Platforms

© 2007, Lenin Singaravelu Georgia Tech 11

SoCx and Vulnerabilities

Greater SOf‘tware CompleXIty 003 E!:{l:c:rlr::!ation between Error-Rate and Funlciion Size
implies more software errors sl
o Larger code base is harder to $ ol N
analyze, test and verify 5| J—
Software complexity metrics such g .l
as LOC, Cyclomatic Complexity, 8 | PRSR—-
Henry & Kafura's Information Flow R e
metric exhibit positive correlation o 100
with software errors [Shepperd93] AR TN SE 1)

Figure 5: This graph shows the correlation between

~2 VUInerab”'t'eS per mOnth W|th IE function sizes and error rates. It is drawn by sorting the
and FlrefOX [S ecun |a] functions that have notes by size, dividing them equally

into four buckets, and computing the aggregated error

; ; ; rate per bucket for each checker. For all of the checkers
Arbltrary COde exeCUtlon’ Securlty except Inull, large functions are correlated with higher

bypass vulnerabilities in Web exror rates.

Service Platforms [Secunia] Function size vs. Bugs

Chou et al. SOSP 2001

© 2007, Lenin Singaravelu Georgia Tech 12

Usability Challenges

Popularity of Existing Interfaces
o Users familiar with GUI of browsers

o Large number of legacy programs dependent on legacy
interfaces (e.g., interface between application-level software and
middleware)

o Remote interfaces such as HTTP widely used over the Internet
Users/Developers used to software with large number of features

o App. Customization is a desirable feature: 2295 extensions for
Firefox

o Extension architecture of WSPs allows developer to add features
such as load balancing, logging, etc...

Cannot Completely Avoid Reuse of Legacy Code & Interfaces

© 2007, Lenin Singaravelu Georgia Tech 13

Opportunities

Web-based applications exchange
information with varying sensitiveness

Online Banking Session: login+password,
Account Status Information, Account
Modification information

o Banks recognize this difference: Transaction
Authorization Numbers

© 2007, Lenin Singaravelu Georgia Tech 14

Funds Transfer Page of Deutsche Bank

» Kunden-Logout

db OnlineBanking Deutsche Bank

Privat- und Geschaftskunden AG

ncennunmer 114 1230557 | Upersiont OSSN nrDepot | servicesoptonen| |

Inlands-Uberweisung
Umsatzanzeige H Zu Ihrer Sicherheit
» Inlands-Uberweisung Bitte Gberpriifen Sie die angezeigten Daten und bestétigen Sie Inren Auftrag mit einer giiltigen TAN.
Termin-Uberweisung -
Auslands-Uberweisung Ihr Uberweisungsaufirag
Uberweisung auf Untergbnlo Empfanger BBP-Fitness A Daten (iberpriifen
Uberweisungsvorlage Konionummer 3060390 und freigeben
L astschrift BLZ 54850010
Lastschrifi-Daverauflrige Kreditinstitut Sparkasse Sudliche Weinstralke in Landau
Lastschrift-Vorlage Betrag 64,93 EUR
Dauerauftrage Verwendungszweck Mitgliedsbeitrag
Scheckbestellun Auftraggeber Max Mustermann
Bauspar-Auskuft Kontonummer Aufiraggeber 1234567
TAN-Block akiigieren
TAN-Eingabe 0 Tipp

v Kunden-Lofout I
. A . Sie k Ihre TAN
Bitte geben Sie folgende TAN ein: aLechGrzﬁzr;rrquus

Nr. 35 @E@@ eingeben. Benutzen Sie

hierfiir die Schaltidchen
neben dem Eingabefeld.

4 Auftrag dndern Uberwe:~ung ausfiihren ¥

User Sets Transfer Parame One Time TAN Number to
during previous Interaction: Authorize Transfer

& AUV UL ULlgalay vt "o CULgia L et 1o

... Opportunities

Use different components to handle
information with differing sensitivities

0 Potentially reduces functionality of software
handling sensitive information

© 2007, Lenin Singaravelu Georgia Tech

16

Solution: AppCore Approach

Goal: Restrict the Flow of Security-Sensitive
Information to Components that Need Access

Approach

Split Application into Trusted and Untrusted Parts

o Trusted Part consists of components that require access to
sensitive data

Hide Sensitive data from untrusted part

Execute Trusted and Untrusted parts in separate protection
domains

© 2007, Lenin Singaravelu Georgia Tech 17

Design Goals

ldentify Trusted Components and Limit Flow
of Sensitive information to such components

Reduce complexity of Trusted Components
Reuse Legacy Code as far as possible
Reuse Legacy Interfaces as far as possible
Minimize Performance Overheads

© 2007, Lenin Singaravelu Georgia Tech 18

Addressing Security Problems

PoLP: We hide sensitive information from
components that do not need access

SoCx: Trusted Components a subset of
complete application
0 Expect diminished complexity

© 2007, Lenin Singaravelu Georgia Tech

19

Applications ot AppCore Approach

E-Commerce Transaction Client AppCore
o Reduced complexity by over order of magnitude

VPN AppCore and E-Mail signer AppCore
reduce complexity by 3X to 5X

Similar approaches employed to reduce
complexity in system services, e.g., SSH
[Provos03] and Device Drivers
[Ganapathy07]

© 2007, Lenin Singaravelu Georgia Tech

20

Timeline

o Client-side AppCore for https-based Applications

M|

© 2007, Lenin Singaravelu Georgia Tech

21

https-Based Applications

Online banking, electronic commerce ...

o Use HTTP over SSL to protect information flow
over network

Client application of choice, the Browser,

contains multiple security vulnerabillities

Service Providers recognize this and use
one-time keys, dual-factor authentication,
mouse input instead of keyboard input etc...

o Attackers run sophisticated malware to bypass
such systems: e.g., Screen Scraper [APWG095]

© 2007, Lenin Singaravelu Georgia Tech 22

Client-Side AppCores for https-based
Applications

Leverages fact that sensitiveness of information in
https-based applications differs

e.g., Online banking application exchanges 3 types
of information
o Non-sensitive: bank front page, etc..

o Low-Sensitivity: Sensitive information but requires lot of
functionality: e.g.,Account status with graphs, spreadsheets

o High-sensitivity: Information that leads to irrevocable
account modifications, e.g., TANs leading to funds transfer

Use AppCore for High-sensitivity information, legacy
applications for rest

© 2007, Lenin Singaravelu Georgia Tech 23

Challenges

Reusing Legacy Code and Interfaces
o Minimize modifications to browser
o Reuse HTTP protocol

No Explicit labeling of information

Flexibility in use of AppCore

0 e.g., Use AppCore for high-sensitivity information
on home machine, but use AppCore even for low-
sensitivity information on public access machines

© 2007, Lenin Singaravelu Georgia Tech 24

AppCore

Use a https proxy to trap all incoming
messages

a2 Minimal modification to browser (proxy settings)
Proxy determines sensitiveness of messages

Sensitive messages forwarded to a small and
simple viewer (Trusted Viewer)

Rest of messages sent to legacy browser
o Legacy browser runs as untrusted application

© 2007, Lenin Singaravelu Georgia Tech 25

‘ System Architecture: BLAC

User

| High-sensitivity Other input |

input
r Browser
e Middleware
Trusted Viewer le.g., X11)
; default | LiLinux
On Match . o
| we || e
|| server
Patterns:
g *Enter vour Password”
Matching Pt
hitps Proxy Enter vour TAN
[St atibat |
L4Enwv
Nameserver GUI | | 10 | i Loader
Microkernel
| Te/From
_ Sertice Provider

© 2007, Lenin Singaravelu Georgia Tech

26

Inferring Sensitiveness of Information

Sensitiveness inferred from string patterns

o Also includes strings that result in generation of
sensitive user input

Patterns can be specified by end-user or web
server

o Flexible use of Trusted Viewer

© 2007, Lenin Singaravelu Georgia Tech 27

Implementation

Implemented on top of the Nizza Security
Architecture [Hartig02]

o L4 microkernel

o L4Env provides system services such as naming,
window manager, device manager

https proxy and Trusted Viewer execute
directly on top of L4 as trusted processes

Browser executes as untrusted process on
top of L4Linux, a paravirtualized legacy OS

© 2007, Lenin Singaravelu Georgia Tech 28

Evaluation: Security Properties

Flow of sensitive information is limited to

https Proxy and Trusted Viewer

o Vulnerable browsers or malicious extensions
cannot access sensitive information

Trusted Viewer and https Proxy are small and

simple components

o Makes exhaustive testing or formal analysis more
feasible

© 2007, Lenin Singaravelu Georgia Tech 29

Sottware Complexity Reductions

BLAC Linux
Component
Composition | LOC MCC | Composition LOC MCC
oS L4 14,000 | 2,300 | LADUX 383.000 | 65,000
Kernel

Middleware | L4Env 86,300 [11,300 | X Server 1,015,000 140,300
https P https 13,600 | 1,900 |

ps Proxy Proxy : : - -
Applicati Trusted 5,000 290 Mozilla 2,208,000 | 328,300

pplication | v e wer ’ Firefox U ’

Total 118,900 | 15,790 3,606,000 | 533,300

© 2007, Lenin Singaravelu Georgia Tech

30

Performance Evaluation

Use a trace from 3 banks and Amazon.com

Sources of Overhead

0 Software executing on virtualized hardware: 5-
10% for L4 [Hartig97]

o https Proxy: Use simple https clients and servers
to measure and compare overhead

© 2007, Lenin Singaravelu Georgia Tech

31

Page Access Times

110
100;;.......';.‘.;._.:;_.._.;.;;._.__.,:.___._:_____i_____i_____i__?___
D0 oot T L e S e v f i

o

";"""'i"inl-‘rﬂgmmts" B3 Fragments

@ ...E..ﬂmnznn.cum.....iChasa Bank .
g ol - SRR —

HE" 50 r :

5 : ; ! : :

E

[

o

40 11 Lo
20
10 -

= = Linux Client
hitps proxy (BLAC)
e | AL i Client (BLAC)

0

] 250 500 750 1000 1250 1500 1750 2000 2250 2500

Page Retrieval Time (in ms)

Page access times show 2X slowdown

Most pages retrieved well within 2 seconds, which
satisfies over 75 % of users [Jupiter Research]

© 2007, Lenin Singaravelu Georgia Tech

Code and Interface Reuse

BLAC works with unmodified HTTP & SSL
protocols

BLAC reuses browser interface as much as
possible

o User can limit number of pages handled by
Trusted Viewer by configuring the https proxy

© 2007, Lenin Singaravelu Georgia Tech 33

Discussion

Real world web servers have multiple
complications

o Non-https login pages, no support for Trusted
Computing, convoluted html format

Server-side support can simplify BLAC

0 e.g., explicit labeling of data sensitivities simplifies
Proxy

© 2007, Lenin Singaravelu Georgia Tech 34

‘ Timeline

Q

a Server-side AppCore for Web Service Platforms

© 2007, Lenin Singaravelu Georgia Tech 35

Web Service Platforms (WSPs)

Provide Middleware support for Service
Oriented Computing

0 e.g., Axis, .NET, WebSphere Application Server

Increasingly used in security-sensitive
services, e.g., PayPal’'s payment processing
web services

Employ security protocols such as SSL, TLS
and WS-Security to protect information flow

© 2007, Lenin Singaravelu Georgia Tech 36

W3C’s Web Services Architecture

WSPs implement W3C'’s
web services architecture
Main components are

o Communication protocols
(HTTP)

o Message Wrapping (SOAP)

o WS-* extensions

o Publish and Discovery
mechanisms

No directions on

Implementation strategy

o Security Processing co-
located with other types of
processing

© 2007, Lenin Singaravelu Georgia Tech

Security

Processes
Choreagraphy, Aggregaton,...

Description
WSDL

Messages

S0AP Extensisons
(Rediability, Transactions, Addressing,...}

SOAP

Communication
(HTTP, FTP, SMTF....)

awabeuspy

37

Axis2 WSP

Popular Open Source WSP

Implements a Data-flow model for message
processing

Each Message is assigned to a thread.

Thread calls appropriate handlers in
sequence for transport, SOAP, WS-*
processing and application code

© 2007, Lenin Singaravelu Georgia Tech 38

‘ Information Flow 1n Axis2

One of these handlers is a security handler

.
—

Web Service
e SOAP B
Application - usiness
Logic
Client Handlers Handlers _
API intercepters) Transport Transport (intercepters) e-"-".ﬂéﬁ —_—
- Sender Listener Receiver
/’ N Y,
7 N— J
Y ~—

= All Handlers execute in same protection domain and same address space

= Security Handler controlled by configuration file and global variables
Both accessible to all handlers

a

© 2007, Lenin Singaravelu Georgia Tech

39

Security Problems 1n WSPs

Large and Complex Software, over 110
KLOC

0 Support for extensions and configuration files
further complicates analysis and testing

o Contain multiple security vulnerabilities [Secunia]

Extensions have access to sensitive data
0 e.dg., Indirect access in the Axis2 WSP

© 2007, Lenin Singaravelu Georgia Tech 40

Pol.P Problem in Web Service Platforms

outparam = ctx0.getAxisConfiguration() .
getParameter ("OutflowSecurity") ;

1f (outparam !=null) {
ome = outparam.getParameterElement () ;
itor = ome.getFirstElement () .getChildElements () ;
while (itor.hasNext ()) {
attr = (OMElement) itor.next();
if ("encryptionUser".equals (attr.getLocalName ())) {

attr.setText (“weak key");

© 2007, Lenin Singaravelu Georgia Tech 41

Applying AppCore Approach to WSPs

|dentify Trusted Components

Compose them into AppCore (T-WSP)

o Modify legacy WSP (U-WSP) to call T-WSP to
operate on sensitive data

Limit flow of sensitive data to T-WSP

Split application-level code into trusted and
untrusted part

© 2007, Lenin Singaravelu Georgia Tech 42

Identitying Trusted Components

Key Assumption: Sensitive information is protected

using WS-Security

o Note: We do not have to infer sensitiveness of data as in
BLAC.

Rely on W3C specifications and Axis2 source

code and documentation to analyze WSP

Security Related Extensions such as WS-Security,
WS-Trust and their config. files are Trusted
Components

Message Splicer for controlling flow of information
(explained later)

© 2007, Lenin Singaravelu Georgia Tech 43

Untrusted Components

Components that do not need access to sensitive
data

o We make no assumptions about the properties of these
components

WS-* extensions such as WS-Addressing, WS-
ReliableMessaging, WS-ResourceFramework, WS-
Coordination, WS-AtomicTransaction etc...

SOAP processing and transport layer processing
Untrusted portion of application

© 2007, Lenin Singaravelu Georgia Tech 44

ISO-WSP Architecture

Application

Trusted Application

Message Splicer

T

Security - n

1\

Sensitive Config Files

Security - 1 h\s* SOAP Extensions

NonSensitive Config Files

Untrusted Application

Processes
{Choreography, Aggregation)

Description
(WSDL)

Messages

SOAP Extensions

wawsbeuep

SOAP

Communication
(HTTP, SMTP, FTP,...)

Insert RMI Calls. Serialize and Deserialize parameters

© 2007, Lenin Singaravelu Georgia Tech

45

Securing Informatio

i ; Untrusted
Fmss cRRieien |(i Application
Application o
B
4 .
T E __— WSP Processing - A
—>| Message Splicer E:‘J-f.ﬁ &)
---------- j U-WSP

© 2007, Lenin Singaravelu Georgia Tech 46

Application Support for ISO-WSP

Information Flow Split into two parts
o => Application too has to be split

Example: Payment Processing Web Service

PResults ProcessPayment (
OrderInfo ord,
CustomerInfo cinftf,
CreditCard cc);

© 2007, Lenin Singaravelu Georgia Tech 47

‘Why Split Applications?

public class CreditCard{
private String ccNum, Name, zip;
private int expiryMon, expliryYr;

/* Getters,Setters */
public String getCcNum () {...}
public void setCcNum(String num) {...}

/* Validate Card*/
public boolean validate(){...}

/*Charge Card and return a Txn ID*/
public String chargeCard(float amount)
/* Additional Functions */

{...

© 2007, Lenin Singaravelu Georgia Tech

48

Secure Functional Interface (SFI)

Interface to Sensitive Objects that is available to untrusted code
o Provides a restricted view of sensitive objects

Designed by the developer

Example:
/* Classname and Namespace*/
class:=edu.gatech.cc.pp.CreditCard

/* Interface */
interface CCsfif{
boolean validate() ;
String chargeCard(float amount);

© 2007, Lenin Singaravelu Georgia Tech

49

Generate Trusted and Untrusted Code

Trusted Code handles actual data

Untrusted Code gets dummy data items +
unique token

o Token is a capability to access sensitive data
items

Untrusted Code uses SFI to operate on
sensitive data

© 2007, Lenin Singaravelu Georgia Tech 50

SFFI Example: Untrusted Code

public class CreditCardUnt extends CreditCard {
private String sfilD;
private CCsfi stub = null;
public boolean initStub() {..}
/* override the methods defined in SFI */
public boolean chargeCard(float amount) ({
if(sfiID != null) {
initStub () ;
stub.validate (sfiID, amount);
}else{

super.validate () ; ‘\\\

RMI Call. Pass token along
with other parameters

© 2007, Lenin Singaravelu Georgia Tech

Developer Input to Port Apps

Specify SFls
o Generate Trusted and Untrusted Code

Code to interface Trusted application with T-
WSP

Parameters for Message Splicer

o Instances of dummy objects, e.g., Credit card with
iInvalid numbers

Change serializers and deserializers
o Modify few lines of code

Input validation code for SFI functions

© 2007, Lenin Singaravelu Georgia Tech 52

Implementation Details

Implement a T-WSP for Apache Axis2

a0 Contains a WS-Security Implementation +
Message Splicer

Modify Axis2 to perform RMI for WS-Security
processing

o Serialize and Deserializers for SOAP message

o ~800 New or Modified LOC

Implement Payment Processing Service, and
port the RUBIS web service

o Cost of porting discussed later

© 2007, Lenin Singaravelu Georgia Tech 53

Payment Processing Service

ISO-WSP adds 7.6 ms overhead (~19%)

2 5 msin the WSP, rest in application

Application level costs include

o Deserializing twice — in trusted and untrusted part
(~1.5ms)

o Two RMI calls for charging card and cleaning up state
on trusted part (~0.8 ms)

© 2007, Lenin Singaravelu Georgia Tech

54

Performance Impact

Few ms is small compared to hundreds of ms
response time of real-world web services [Kim04]

ISO-WSP only affects flow of sensitive data

By separation of concerns in interface, impact can
be minimized

E.g., Split interface into authentication interface and
Functional Interface

a Auth interface uses T-WSP, rest use U-WSP

o T-WSP removed from performance critical path

o e.g., RUBIS has 6 functions handling sensitive data and 14
handling non-sensitive data

© 2007, Lenin Singaravelu Georgia Tech 55

Security Improvements

Only T-WSP and trusted part of application have

access to sensitive data

Reduces software complexity of WSP by 5X (<
20KLOC to test/verify)

Importantly, Most of functionality of legacy WSPs is

retained

Module | Axis2 | Extensions | WS-Security | WSP-Total | T-WSP
SLOC 23,580 70,350 16,900 110,830 19,360
MCC 7,930 24,100 5,180 39,210 6,050

© 2007, Lenin Singaravelu Georgia Tech

56

‘ Cost of Porting

= Port Payment Processor and RUBIS web services

= Majority of porting effort focussed on interface
between T-WSP and Application

o Can be further reduced by using code generators similar to

WSDL2Java.sh
Service SFI Untrusted Total
Portion (% Modified)
Payment 5 3
Processor Y4
] /
RUBIS 9 12 / 49 (<1%)

Code and Interface Reuse

ISO-WSP reuses legacy WSP for non-sensitive
tasks

o Developers retain access to most functionality

Message Splicer adds and removes tokens
transparently w.r.t remote application

o No changes to remote interface

Interface between U-WSP and untrusted application
IS retained

o New interface between T-WSP and trusted apps

Reuse legacy application level code through
inheritance

© 2007, Lenin Singaravelu Georgia Tech 58

Discussion: Applicability to Other WSPs

Easy to port to other WSPs
Nalve mechanism: Source code access not
required

o T-WSP functions as a proxy WSP (similar to https
proxy in BLAC)

Optimized approach: Modify legacy WSP to
invoke T-WSP

Requires:
0 Serialization/Deserialization of SOAP messages
o Remote Invocation Mechanism

© 2007, Lenin Singaravelu Georgia Tech 59

Timeline

Q

M|

WS-FESec for Web Service Compositions

© 2007, Lenin Singaravelu Georgia Tech

60

Web Service Compositions

Terminology: Data producing services, data
consumers, and Intermediate services

Combine multiple services transparently to provide a
value added service

o e.g., overlaying GPS data of bus or apartment listings on
top of a Map service, Collecting auction or for sale listings
of books from multiple sites, ...

Rising in popularity due to web service interfaces
provided by big service providers:

o e.g., eBay, Google, Yahoo, Amazon, PayPal all provide
Interesting services

o Yahoo Pipes: an example of user-driven composition

© 2007, Lenin Singaravelu Georgia Tech 61

Security Problems in Compositions

Traditional Interaction: Consumer talks directly to
data producing service

In Compositions: Consumer talks to intermediate
services

o Intermediate services need read/write access to portions of
messages

o => Consumer now has to trust all intermediate services

Web services operate in open environment

o Not possible to trust or even know of all services involved
In composition

© 2007, Lenin Singaravelu Georgia Tech 62

‘ Example: An Electronic Prescription
System (EPS)

= www.pharmacychecker.
com, www.nyagrx.com

Insurance Health
i (Lo compare price of
— ~ individual drugs
entifler Prascription
Physician Rx Store Hemel = EPS prices complete
By o P prescription (Rx)
N [Assreseeor = Adds aggregator
; X I Fx ldentifier, Se rVI Ce
Men-Rx Drugs, .
Patient ;:;L;;gggf- o Compares prices,

shipping options, efc...

© 2007, Lenin Singaravelu Georgia Tech 63

Data Format ot Electronic Prescription

——

Demographics

Patient
Information

Clinical Decision Support
Rules Base

Other Details

Physician I: Prescriber
Information

Prescription: Drug List Drug

Information

Drug Related Details

. Insurance Details
Miscellaneous

Information

Optional Information

© 2007, Lenin S Source: eHealth Initiative Executive Summary 2004. 64

Security Requirements tor EPS

Confidentiality Requirements:

o Patient and Physician have access to complete
RX

o Pharmacy that fills the Rx gets access to patient
information

Integrity Requirements:

o Pharmacies must be able to verify signature on
RX

o Patient must be able to verify price of Rx as
specified by each pharmacy

© 2007, Lenin Singaravelu Georgia Tech 065

Usability Requirements

Pharmacy must be able to look at list of
drugs, dosage, efc...

Aggregator and Pharmacy services must be
able to look at coarse-grained patient
address information

Aggregator must be able to look at price of

RX

o Simple modifications might be allowed: e.g.,
change number of items desired

© 2007, Lenin Singaravelu Georgia Tech 06

Open Environment

Large number of pharmacies on Internet

o Patient does not know and might not trust some of
them

Pharmacies do not know of all aggregator
services

0 Some aggregator services might be fraudulent,
e.g., prefer one pharmacy to another

© 2007, Lenin Singaravelu Georgia Tech 67

WS-FESec

Uses Fine-Grain Signatures and Encryption

o Requires web service developer input to classify
data items

o Leverages WS-Security for cryptographic
operations

Extends WS-Security specification to better
support open environments

© 2007, Lenin Singaravelu Georgia Tech 068

Integrity Protection using WS-FESec

Integrity Groups (IntG): Groups of data items that are
relatively independent from rest of message

o e.g., each item in listing below is independent from rest of items,
list of drugs in a Rx

Developer specifies IntGs for a service
o Each IntG signed separately

o => Parts of message can be modified without invalidating the
complete message

[FI =i 10 Discworld PBs by Terry Pratchett (Eric Soul Music +) & - $24.99 $5.00 1d 04h 08m

il 3 MNICE LOT OF 7 TERRY PRATCHETT PAPERBACK BOOKS B - $18.00 5465 1d 10h 56m
. = $8.50

] (5l Terry Pratchett DISCWORLD pb's CARPE JUGULUM UK +4 US @ =Buyl ow 59 90 54.25 2d 06h 55m

E o= Terry Pratchett COMPLETE{well, almost) DISCWQORLD 24 pbs 1 $39.99 Mot specified 2d 13h 49m

O i3] Lot 12 Terry Pratchett Discworld series pb some htf B 6 $16.50 $6.00 &d 02h 53m

O I £% | ords and Ladies NEW Pratchett Terry BOOK B FBuyitNow %2 87 See description 6d 09h 53m

© 2007, Lenin Singaravelu Georgia Tech 69

Confidentiality Protection

Confidentiality Groups (ConfG): Group of
items with same confidentiality requirements

l.e., Items that can be seen by same set of
service providers

o e.g., list of drugs can be seen by all pharmacies,
however, patient information can be seen only by
one pharmacy => 2 separate ConfGs

Each ConfG encrypted with separate key
o But key distribution in open environment?

© 2007, Lenin Singaravelu Georgia Tech 70

Key Distribution

Each Color represents a Demographics

ConfG
_ Clinical Decision Support
o Drug Information should be Rules Base

available to all pharmacies

Encrypt each ConfG with Other Details

separate key Prescriber

WS-Security encode key

' ion i Prescription: Drug List
information in a Keylnfo rescription: Drug Lis

structure Drug Related Details

o e.g., ConfG key is

encrypted with the public Insurance Details

key of pharmacies

Optional Information

© 2007, Lenin Singaravelu Georgia Tech 71

Key Distribution - 11

Limitations of Keylnfo: Only one Keylnfo per
encryption

o => All recipients of a particular piece of data must
share the same secret

For Drug Information: All Pharmacies must
understand the same Keylnfo structure

0 => pharmacies share the private key.
Not a feasible option in open environment
Solution: Allow multiple Keylnfo structures

© 2007, Lenin Singaravelu Georgia Tech 72

Key Distribution - I11

Insufficient knowledge of Recipients

o e.g., New online pharmacy unknown at message
generation time

Large number of potential recipients, e.g.,

thousands on online pharmacies

o Cannot have Keylnfo for each recipient

Add CallbackReference to key types

0 Requires recipient to invoke the given URL to get
key information and decrypt the message

© 2007, Lenin Singaravelu Georgia Tech 73

Callback Reterence Example

<ds:KeyInfo Id=".." xmlns:ds="..">

<wsse:SecurrityTokenReference wsu:Id=".."
wsse:TokenType=CallbackReference>

<fesec:CallbackReference
URI=http://rxws.com/eps/Auth
fesec:AuthMechanism=UsernameToken
fesec:MsgID="0xRXID145" />

</wsse:SecurityTokenReference>
</ds:KeyInfo>

URL to contact to get the key information

Authentication Mechanism to be employed to retrieve the key
Parameters to use to retrieve the key

© 2007, Lenin Singaravelu Georgia Tech 74

Evaluation: Security Properties

Model Web Service compositions as a lattice
Denning76]

Data items in a message have security classification
evel (say L,)

Services and Clients have classification (say L..)
Access is allowed only if L. dominates L.

Challenge: Open environment of web services
implies no uniform classification mechanism

© 2007, Lenin Singaravelu Georgia Tech 75

Modeling Compositions as a Lattice

Introduce two new levels:

o Low: All unprotected data

o High: Imaginary level that dominates all known levels
Each data producing web service has its own lattice
o However, all of them share same High and Low levels

Naive combination: Attach all Lows and Highs to get
lattice

o Inefficient, but can model web service compositions on the
Internet

© 2007, Lenin Singaravelu Georgia Tech 76

WS-FESec for Lattice

Each ConfG is a level in a lattice (L)
Recipients possess one or more labels (L)

Data producing web service determine labels
of recipients

o e.g., using Authorization mechanisms

Key distribution in WS-FESec ensures that
key is available only if L, dominates L

© 2007, Lenin Singaravelu Georgia Tech 77

A Simple Classification System For EPS

{ High }

t

{ Patient }

t

{ Pharm }

!
{Low}

Initially, Patient &
Physician have
Patient Label

Later on, one
pharmacy gets
Patient Label

© 2007, Lenin Singaravelu Georgia Tech

Patient [

Patient

Demographics

Clinical Decision Support
Rules Base

Other Details

Prescriber

Prescription: Drug List

Drug Related Details

Insurance Details

Optional Information

Patient

Pharm

78

Performance

Modified WSS4J library to
perform multiple signatures
and encryption per
message

o Evaluate using a simple
stock quote service

20 ms overhead per
additional signature, 22 ms
per encryption

o Digital signatures contribute
around 15 ms of overhead

Can be reduced by
employing symmetric
encryption for Keylnfo, e.g.,
WS-SecureConversation

© 2007, Lenin Singaravelu Georgia Tech

—— Plain
| —O—Body: 1 Sig
WS-FESec: 1 Sig per Quote

Response Time (ms)

1 2 3 4 5 6 7 8 9 10
Quotes Per Message

—&— Plain

500 1 —O—Body:1Key

WS-FESec:Single Channel
—O— WS-FESec: Multi-Channel

Response Time (ms)

8 9 10

1 2 4 5 6 7
Quotes Per Message

79

Using WS-FESec in Compositions

Encryption by WS-FESec modifies message
format

o Intermediate services must be capable of working
with partially encrypted messages

WS-FESec can be easily integrated with
compositions languages, e.g., BPEL4WS

o Requires ability to manipulate WS-Security
headers

© 2007, Lenin Singaravelu Georgia Tech 80

Limitations of WS-FESec

Fine-grain signatures fail when messages are
completely modified
o e.dg., Text to Speech service invalidates all signatures

WS-FESec does not address confinement, e.g., An
authorized web service can release sensitive
information

Trustworthy computing in conjunction with ISO-WSP
can provide better guarantees

o e.g., allowing only a portion of web service access to
sensitive information and using Trusted Computing
hardware for remote attestation

© 2007, Lenin Singaravelu Georgia Tech 81

‘ Timeline

» Related Work
= Conclusion

© 2007, Lenin Singaravelu Georgia Tech 82

Related Work

SSL, TLS, WS-Security provide protection on
network

End-Point Software can be protected in multiple
ways
Protection From Malicious Software:

o Trusted Computing (TC): Use hardware support to ensure
software integrity

o Integrity Measurement Architecture [Sailer04] extends TC
support to include configuration files and runtime
extensions

o WS-Attestation [Yoshihama05] and Trusted Web Service
[Song06]

o Complex software still runs on TC hardware => runtime
vulnerabilities compromise system

© 2007, Lenin Singaravelu Georgia Tech 83

Related Work - 11

Securing Software from vulnerabilities
o Defenses against buffer overflow, format string [Lhee03]

o CCured [Necula02], Incorporating authorization policy
enforcement in existing code [Ganapathy07]

o Address Space Randomization[Bhatkar05], NVariants[Cox006]

o AppCore reduces code base that needs to be protected: static
analysis is more efficient and run time protection is less costly

Information Flow Restriction: Reduces impact of attacks

o Capability-based systems — Hydra & Protected Data Paths,
MACs - Asbestos, ABAC — Polaris, Language based Information
Flow Analysis [Sabelfeld03]

o Orthogonal to AppCores: Since AppCores have lower
functionality requirements, easier to constrain them

© 2007, Lenin Singaravelu Georgia Tech

84

Related Work - 111

Refactoring Software

o Privilege Separation[Provos03], Proxos [TaMin06]

o Middleware Refactoring for customization [Zhang03]

o AppCore approach similar, but more emphasis on
functional simplification and reusing interfaces

Browser Defenses

o VMware’s browser appliance, Tahoma [Cox06] use
separate VM for browser instances

o Place functional restrictions on browsers for “complete”
sessions: AppCore does not restrict browser behavior

© 2007, Lenin Singaravelu Georgia Tech 85

Related Work IV

Security in Web Service Compositions

o Reputation-based systems [Yang05], trusted third party-
based systems [CarminatiO5] to gauge trustworthiness

o Decentralized Orchestration [Chafle05] to control flow of
information

o Security Authorities [Sedukhin03] to enforce end-to-end
security

WS-FESec is designed to handle open

environments, specifically to handle uncertainties

regarding recipients

© 2007, Lenin Singaravelu Georgia Tech 86

Summary

Presented the AppCore approach to tackle the problem of large
and complex software

o Split software into small trusted (AppCore) and large, legacy
untrusted part.

o AppCore has access to sensitive information and uses legacy part to
perform non-sensitive operations

o Significant reductions in complexity attainable with moderate
overheads

Design and Implementation a client-side AppCore for https-
based applications

o Reuses legacy browser transparently for non-sensitive
interactions

o Works with existing HTTP and SSL protocols

© 2007, Lenin Singaravelu Georgia Tech 87

... dummary

Design and Implementation of a server-side AppCore for web
services middleware

o Security sensitive functionality isolated in T-WSP and trusted part
of application

o Simplify porting of existing applications by proposing SFls
o Reuse legacy code for non-sensitive tasks
o Message Splicer maintains conformity with external interface

WS-FESec: An end-to-end security framework for web
service compositions

o Specifically designed to work in an open environment

o WS-FESec supports lattice model of secure information flow

o Overhead of few tens of milliseconds per signature and
encryption

© 2007, Lenin Singaravelu Georgia Tech 88

Questions?

© 2007, Lenin Singaravelu Georgia Tech.

89

