
Success Thru Small Loosely

Coupled Pieces:
A View From Three PerspectivesA View From Three Perspectives

Travel Itinerary

• Architectural Goals

• Three Piece-wise

Architectures

• Construction Flexibility &

Testing

2

Testing

• Version Control & Deployment

• Performance vs Design Flexibility

• Some SOA Advice

Architectural Goals

• Solve the Problem

• Complete within Time/Budget

• Reduce & Manage Risk

• If you can’t do this, why bother?

• How can you increase the likelihood of success?

3

• Ease Future Maintenance

• No one likes to wait, or to spend more than they
budgeted.

• Particularly the people that pay your salary.

• Total cost of ownership is often FAR more than
for initial

• development. Keep future costs low as well.

Three Piece-wise Architectures

Unix Command Line

PathPort

Line oriented data formatting

Small, specific commands

Pipes, redirection, and simple shell scripting

XML document interchange

4

Service Oriented Architecture (SOA)

XML document interchange

Generic client with domain specific plugins

Web services for data access and computational analysis

XML document interchange

Services around business processes and data types

BPEL, BPM, and/or EDA “composition” of services

Unix Command Line

Line oriented data formatting

fstab, passwd, and various configuration files

Small, specific commands

grep, cut, sed, head, tail, find, users, du, diff, ps, sort

5

Pipes, redirection, and simple shell scripting

| supports simple input-output data flow

Various redirections read/save data streams from/to files

Script control logic enables simple program creation

ps -ef | tail +2 | sort -n -r +7 -8 | head -1 | cut -c9-14

PathPort (http://pathport.vbi.vt.edu)

XML document interchange

DAS, MAGE-ML

Generic client with domain specific plugins

GenomeViewer

MAGE Viewer

ToolBus

RefSeq DB

BLAST

6

Web services for data access and computational analysis

Access to chromosome/genome information

MUMer, BLAST, ClustalW, and other analysis tools

MAGE Viewer

SeqCompare
MUMmer

Group

ComparisonPhylogenetic
Phylogeny DB

Service Oriented Architecture (SOA)

XML document interchange

Based on XSD, WSDL, and SOAP standards

WS-I Basic Profile Complaince

Internal (corporate) interoperability standards

Services around business processes and data types

Business aligned data access (policy, claims, dependents)

7

Business aligned data access (policy, claims, dependents)

Business transactions (addressChange, premiumPayment)

BPEL, BPM, and/or EDA “composition” of services

Bring Unix like shell scripting to (web) services

Automated vs human workflows (and mixes)

Short vs Long running transactions/workflows

SOAP over HTTP and JMS transport

SOA as Logical Enterprise Architecture

BPM

Orchestrators

Initiators

Presentation

Workers

BPM

& B2B

8

Enterprise Data Model (EDM)

Data Access Services (DAS)

Orchestrators

EA

DB DB DB DB DB DBDB

Workers

Construction Flexibility

Unix Command Line

PathPort (over 800K LOC)

No hidden interactions between commands

Commands can be designed/implemented independently

Scripting can be used to build new commands ontop of old ones

No dependencies between ToolBus and web services

9

Service Oriented Architecture (SOA)

No dependencies between ToolBus and web services

Plugins depend on ToolBus, but independent of each other

Plugins and web services must agree on XML formats

Loose coupling, stateless, and idempotent as much as possible

Create enterprise datatypes around Enterprise Data Model (EDM)

Use data access services to create service independence

Testing
Unix Command Line

PathPort

Verbatim I/O tests for backward compatibility

Can use the commands themselves to script auto regression tests

No good way to determine non-backward compatibility impact

Plugin compatability testing due to shared packages

10

Service Oriented Architecture (SOA)

Plugin compatability testing due to shared packages

Used customized WS tests with scripting for regression tests

GUI plugin testing required domain expert participation (slow)

Migrating from custom clients to MST and Quality Center

Regression testing aided by Quality Center test library

End-client (e.g., web browser) testing via WorkSoft’s Certify

Version Control & Deployment

Backward Compatible Changes

Unix: new commands, new options to old commands

PathPort: new plugins, new data and analysis web services

SOA: new WSDL operations, new XSD types, making

required type element/attribute optional

11

Non-Backward Compatible Changes

Unix: removed command option, change in output formatting

PathPort: Toolbus plugin interface changes

SOA: Change to operation behaviour, new required element

for existing XSD type

Version Control & Deployment

Backward Compatible Changes

Regression test to ensure backward compatibility

Replace existing version with new version

Non-Backward Compatible Changes

12

Perform impact analysis

Deploy as “new” capability

OR update clients as part of version replacement

AND regression test all updated clients

ALWAYS inform users/clients of change!

Performance vs Design Flexibility

Unix

PathPort

Character I/O with pipes and new process creation is slow

vs

Easy to reuse existing commands to create new ones

Web services are slow w/ larger payloads for data access/analysis

13

Service Oriented Architecture (SOA)

Web services are slow w/ larger payloads for data access/analysis

vs

Transparently add data and fix bugs with out client redistribution

Web services are slow w/ larger payloads

vs

Greater reuse and composability for new business processes

Some SOA Advice
• Create organization standards around your platforms

• Leverage your EDM to design the XSD and create contract-first
data access services

• Avoid building services to projects, build them for the enterprise if
reuse is desired

• Use an up-to-date repository (with impact analysis support) for
your XSD/WSDL and actively educate the design/develop
community

14

community

• Use an ESB/WSM to measure service health proactively

• Think about versioning carefully (XSD-WSDL-code dependencies)
and use platform independent load balancing

Content based routing for non-compatible versions

OR

New load balanced end-points for each major version?

• And most importantly, maintain loose coupling between services

The whole is greater than the

Whole > ∑Parti
i

15

The whole is greater than the

sum of its parts.

-- Unknown

