Summer Institute on
Software Architecture

Embedded Systems Architecture
4: Methodical Optimization

Instructor: Calton Pu

calton.pu@cc.gatech.edu

- |
Ge‘.:l’.regéﬂ ﬁlil © 2001, 2004, 2007 Calton Pu and Geor S SGUIEIOTCCATOIGE

Overall Structure (Day 1)

e Introduction to modern embedded systems

Ubiquitous computing as a vision forintegrating future
embedded systems

From embedded to resource constrained systems

Some basic techniques for constructing real-time
embedded system software

® Principled embedded software infrastructure

Survey of real-time scheduling algorithms: static,
dynamic priority, static priority dynamic

I/O processing and networking for embedded systems

Georgia I
Tech ||




Overall Structure (Day 2)

e Automotive embedded software architecture
Component-based software engineering
Case study on automotive embedded software
e Sampling of methodical optimization of
embedded software
Specialization of system software
Code generation and translation

Aspect-oriented programming

Georgia I
Tech |

Outline

® An Overview of Specialization
Static Specialization
Dynamic Specialization
Optimistic Specialization

® Specialization Toolkit
Tempo Specializer

® Specialization Examples

® Specialization in Infopipe

Georgia I
Tech |




Specialization

® Operating system — too generic

® Specialization
A technique for optimizing systems code
An application of partial evaluation
Specialized, simplified component

Better performance!

Georgia I
Tech )

Partial Evaluation

int Multiply(int a, int b)
{

c=a*b;

return c;

// What if we know the value of a?

Georgia I
Tech ||




Specialization Predicate

® Terminology
‘page size =4K” is a
page sizeis a
4K is a

® Predicate characteristics
Static

Dynamic

Georgia I
Tech |

Static Specialization

® Static predicates

® Benefits
“Off-line” specialization: no runtime overhead

e Limitations
Values must be known prior to runtime
Relatively few specialization predicates

Can’t exploit runtime, or even boot-time
knowledge

Georgia I
Tech |




Dynamic Specialization

® Dynamic predicates — must hold
® Benefits

Exploits starting-time knowledge
® Limitations

Runtime overhead

Requires a fast runtime specializer

Specialization predicates must hold for
remainder of the system lifetime

Georgia I
Tech )

Optimistic Specialization

® Dynamic predicates
Need not hold for entire system lifetime

® Benefits
Can be used generally in OS code

® [.imitations

Correctness: detecting when specialization
predicates hold and cease to hold ( )

Performance: overhead of enabling and disabling

specialized components ( )

Georgia I
Tech ||




Challenges

e Hard to identify predicates
Need system experts

® Hard to ensure correctness
Where to guard

® Error-prone, tedious work

® Solution: Specialization toolkit

Georgia I
Tech |

Tempo Specializer

® Charles Consel, G. Muller; and team

® Based on partial evaluation
Generates C code
Find static and dynamic code
System programming features
Compile-time and run-time specialization

Need human help

Georgia I
Tech |




MemGuard

® Detect changes of predicate terms
Uses virtual memory protection

Protection fault handler checks for violation
before writes complete

e Effectiveness?
Correctness guaranteed

High overhead

Page-grained guarding

Georgia I
Tech )

TypeGuard

e Static tool to detect updates
Finds all uses of a specified type
Reports line numbers for updates and leaks

Overloading and aliasing complicate instanee-
based approaches

e Effectiveness?
Finer-grained guarding
Correctness not guaranteed due to lack of type-
safety in C
Still useful (false positives managable)

Georgia I
Tech ||




Replugger

® Implemented at function granularity (atomic
swap of function pointers)

® Synchronizes replugging threads and
normal threads

Georgia I
Tech |

Specialization Examples

® Static specialization of Sun RPC
® Dynamic specialization of BPF

® Optimistic specialization of Linux signals

Georgia I
Tech |




Example 1: Remote Procedure Call

Client Server

XDR (foo X, y
XDR (results

IDL Compiler-Generated
Stubs for Marshalling (generic)

Georgia I
Tech |

Specializing RPC

® Predicates known at compile time
Message system parameters
(BUFSIZE == 8800)
Processor-specific parameters
(sizeof (long) == 4)
Exact purpose of marshalling routines
(x_op == XDR_ENCODE)

Georgia I
Tech |




Specializing RPC(2)

® Static specialization
Applied at client and server

Tempo processes IDL compiler output +
specialization predicates

C compilation of client and server code and
specialized stubs

Georgia I
Tech )

Simple Example

bool _t xdr _| ong(xdrs, | p)
XDR *xdrs;
I ong *I p;

i f( xdrs->x_op == XDR_DECCDE )
return XDR _GETLONG( xdrs, | p);

return FALSE;
}

Specialization predicate for encoding:
xdrs->x_op == XDR_ENCODE
Resulting specialized function can be inlined:

Georgia | XDR_PUTLONG( xdr s, | p)
Tech |




More Opportunities

e Avoid buffer boundary check
® Avoid return value check

® Loop unrolling

® Others

Georgia I
Tech |

I} scralieed
Unspecialized Unspecializec

- PC/Linux @ PCiLinux - Ethernet 100Mbits
+— [PX/Sunos - IPXfSunos - ATM HKMbits
Specialized 294 Specialized

—&— PC/Linux ) *— PC/Linux - Ethernet 100Mbits
—&— [PX/Sunos | L] IPX/Sunos - ATM 1O0Mbats

1000 2 0000 250 500 0

Array Size (4-Byte Integers) Array Size (4-Byte Integers)

Georgia I
Tech |




Impact on Code Size

Message Size (bytes)

20 100 500 1000 2000
Generic 20004 20004 20004 20004 20004
Specialized 24340 27540 33540, 63540 111348

Code size of SunOS binaries (in bytes)

Georgia I
Tech )

Example 2: Packet Filtering

User
System

Network

Georgia I
Tech ||




The Berkeley Packet Filter

A DSL interpreter for filtering network
packets

tcpdump -d host x
{

create BPF program from
arguments;

for ever

{

d packet;

cap lool TS@¢ P ;

pcap i

return; upcall to print packet;

Specializing BPF

® Option 1 -
® Option 2 -
When program is presented at execution time

Statically specialize BPF interpreter for a
constant BPF program of unknown value

e generates a runtime specializer + binary templates
Dynamically specialize when BPF program
value is known

o fill template holes, evaluate static parts

Georgia I
Tech |




Performance Results for BPF

Time taken to process 10MB data (~10,000 packets):

Program Run time Interpretation time
Null (unavoidable overhead) 2.6 sec NA
Original 4.34 1.74
Static specialization 2.84 0.24
Dynamic specialization 3.35 0.75

Georgia I
Tech )

Example 3: Signal Delivery

® Signals
Asynch. communication among processes
System call: k111 (pid, sig)
OS delivers signal and invokes handlerat
receiving process

e Common execution patterns
Repeated use of same signal to same process
Locality exists, but sessions are not explicit

Georgia I
Tech ||




Signal Delivery in Linux

kill (pid, sig)

sys_Kkill (int pid, int sig -- enter kernel

kill proc (int pid, int sign, int priv) -- search process table for pid

send_sig (int sig, task_struct * p, int priv) | -- check for permission

generate (int sig, task_struct * p) -- deliver the signal

Georgia I
Tech |

Specializing Signal Delivery

® Problem - couldn’t recognize sessions:
Cache last signal sent, and destination
First call: test for repeat, invoke generic code

Second call: detect repeat, enable specialization, invoke
specialized code

Subsequent calls: invoke specialized code if it’s a repeat,
else disable specialized code

e Optimistic specialization
Assumes no changes to process state
Guards to detect updates to task struct

Georgia I
Tech |




Performance Results for Signals

m table lookup

O update state
0O context switch

o kernel crossing

Specialized

Georgia I
Tech )

Performance effects:

1. Caching reduces cost of
process table lookup

2. Tempo reduces cost of
interpreting of process state

Advantages of Specialization

® Several opportunities

Communication links: TCP, Shared memory,

Function, ...

Wire formats: XML, XDR, Raw structure, .
e Systematic code transformation

Explicitly identified invariants

Guarding of invariants guarantees correctness

Georgia I
Tech ||




Discussion

® Methodical improvement of system
software code (with some correctness
guarantees)

® Application to production code?
HP-UX file system (SOSP’95)
TCP/IP

Georgia I
Tech )

Specialization in RTES

Code Customization

Remote Customization Infrastructure
Virtualization of memory

Case study: TCP/IP

Performance Evaluation

Bhatia et al [LCN’04] Best Paper, Bhatia et
al [EmSoft’04]

Georgia I
Tech ||




Dedicated Vs. Generic OSes

+ Deeply customized, compact, + Support for standards
fast, well-suited - Generic, coarse grained
- Lack of support for standards abstractions

Georgia I
Tech |

Industry Trends

W current project

O next project

Free B30 b

Green Hills Fam

Sun Chorus B

ATl Nucleus =4
Enea CSEMH

Embedded Linux

Wind River WVxWorks B
FProprietary in-house ==

Windows Embedded

Georgia | il Embedded Systems Developers Survey, 2002
L] Source: Evans Data Corp.



Coarse grained building te Operations

blocks
if (poll (listen_pfds, n, -1)> 1) {
foreach(pfd, listen_pfds) { foreach(sock, my_s
if (hi_r(pfd->revents))
queue(
accept(fd, addr, addr_len));

Performance: Performance:
3000+ conn/sec. 7000+ conn/sec.

Overheads: memory transfers, context switches,

Georgia I sanity checks, data structures
Tech )

Coda-Custornization

GENERIC >
cobE |

CONFIGURA Customizer
TION
VALUES

Georgia I
Tech ||




int tcp_mini_sendmsg (struct sock *sk, void *msg, int

{
int tocopy=0, copied=0;
while (tocopy = (size < sk->tcp->mss) ? size : mss) {
if (copied = (free_space (sk->write_queue.prev.space))) {
if (copied > tocopy) copied = tocopy;
add_data (sk->write_queue.prev, msg, copied);
size = size - copied; msg = msg + copied;
}
else {
struct skbuff *skb = alloc_new_skb();
add_data(skb, msg, tocopy);
size = size - tocopy: msg = msg + focopy.
entail (sk->write_queue, skb);
}
}
return size;
Georgia |
Tech |

Custornization Contexi

int tcp_mini_sendmsg (struct sock *sk, void *msg, int 3

{
int tocopy=0, copied=0;
while (tocopy = (size < sk->tcp->mss) ? size : mss) {
if (copied = (free_space (sk->write_queue.prev.space))) {
if (copied > tocopy) copied = tocopy:
add_data (sk->write_queue.prev, msg, copied);
size = size - copied; msg = msg + copied;
}
else {
struct skbuff *skb = alloc_new_skb();
add_data(skb, msg, tocopy);
size = size - tocopy. msg = msg + focopy:
entail (sk->write_queue, skb);
}
}
return size;
- |
Georgia |

Tech ||




4
r]ra
-l
N )

int tcp_mini_sendmsg (struct sock *sk, void *msg, int

{
int tocopy=0, copied=0;
while (tocopy = (size < sk->tcp->mss) ? size : mss) {
if (copied = (free_space (sk->write_queue.prev.space))) {
if (copied > tocopy) copied = tocopy:
add_data (sk->write_queue.prev, msg, copied):
size = size - copied; msg = msg + copied:;
}
else {
struct skbuff *skb = alloc_new_skb():
add_data(skb, msg, tocopy);
size = size - focopy: msg = msg + tocopy:
entail (sk->write_queue, skb);
}
}
return size;
}
Georgia |
Tech |

Customized e

Customization context size=1400
sk={...}

int tcp_mini_sendmsg (void *msg

{
struct skbuff *skb = alloc_hew_:
Customized code: add_data(skb, msg, 1400);
entail (sk->write_queue, skb):
return O;
}

Georgia I
Tech ||




ornization

Customized
Code

)
Remote customization| Network
server =

Georgia I

Tech |/

How it's use

Application token = do_customize_send(...);

l for (i=0;i<100000;i++) {
customized_send (token, buffer);

0S }

Georgia I
Tech|)




How it's use

Application

I

0os

Georgia I
Tech )

token = do_customize_send(...);

for (i=0;i<100000;i++) {

customized_send (token, buffer);

}

How it's use

Application

J

0s

Georgia I
Tech ||

token = do_customize_send(...);

for (i=0;i<100000;i++) {

customized_send (token, buffer);

}




User space

Customizer Compiler
Application

Kernel Space

Context Context Code
Manager Manager Manager

Last

User space Customization

Application

Request

Kernel Space

Context Code
Manager Manager

Georgia g —
Techt& Application issues customization request




Context Manager

syscall=sys_send
User space fd=4;
rspa daddr=1044321;

flags=32;
Application

Kernel Space

Context
Manager

Gee Context manager picks up customization context

Codea Maj

User space

Application

Kernel Space

e

Gegrrg Check if we have code for the current context
ec




—
(D
),

Custornization req

fd=4; 3
daddr=1044321; Q
flags=32;

addr_len=8;

block_size=1483;

Customizer (...) Application

User space

Kernel Space

Code Code
Manager Manager

)
Te%h@ Application issues customization request

Runtime Layer

E

User space

Customizer Compiler
Application

Kernel Space

Code Context Code
Manager Manager Manager

- |
Georgia | i :
Tech |f ontext manager invokes runtime layer




Customizer

User space
Compiler
Application

Runtime Layer
Kernel Space

Context Code Context Code
Manager Manager Manager Manager

stomizer, a program specializer named Tempe

Compiler

User space
Customizer
Application

Runtime Layer

Kernel Space

Context Code Context Code
Manager Manager Manager Manager

: The customized code is compiled using a standard compiler
= W]




Code Manager

User space

Customizer Compiler
Application

Runtime Layer
Kernel Space

Context Context
Manager Manager

.y
Georgia | ; ;
T&h@ Customized code is sent back

Customization token

User space

Customizer Compiler
Application

Runtime Layer
Kernel Space

Context Context Code
Manager Manager Manager Manager

Georgia I
Tech |




Customization token

E
Customization

User space Token
(eg., O for the

first
customization)

Application
Kernel Space

Context Code
Manager Manager

- |
Georgia icati izati
Te%h@ Application gets back a customization token

Customized syscall

dn Per-process syscall

table
User space

Application

Kernel Space

[ ]
Context Code
Manager Manager

Georgia | Application uses customization token as an index
Tech ||




Access to client side memory

L

movl [socket_pointer],%eax
Customizer

. : 1. Run-time layer intercepts
XCl 0 Cp_mss q
0xc01f363: 0xc01f355 [tp] dereferer_1ce, as CP_U exception.
2. Run-time layer interprets
Runtime Layer instruction with values in

customization context table.
Georgia I
Tech @

Access to client side memory

E

movl [socket_pointer],%eax

1. Run-time layer intercepts

dereference, as CPU exception.

2. Run-time layer interprets
Runtime Layer instruction with values in

customization context table.

3. Customization-time functions

Executed on client

Customizer

Georgia I
Tech ||




Customization Opportunities

® Mappings between socket descriptors and
low level structures

® Routing decisions for every send()
® Socket options interpreted

® Dependencies on buffer sizes

Georgia I
Tech )

Optimizations performed

® Straight-lining code by removing branches
e Constant value propagation

® Loop unrolling

® Function inlining

e Etc.

Georgia I
Tech ||




Results: Improvements in
performance and code size

e Execution time decreased by ~26%
® Code size decreased by a factor of >15

® Throughput improvements:
UDP - PIII: 13%486: 27% iPAQ: 18%
TCP - PIII: 10%486: 23% iPAQ: 13%

Georgia I
Tech |

Specialization Overhead

Overhead = customization time + network
transfer time (< 1 sec)

Bottleneck => execution of customizer +
compiler

Eventually, bottleneck => network transfer
time
When so, bound = (1 + X)*RTT

Georgia I
Tech |




Summary

® Problem: Services in generic OSes are slow
and bloated

® Solution: Dynamic/remote code
customization

® Assessment: Exec time... -25%,
throughput... +20%, code size... -15x

Georgia I
Tech )

Discussion

® Need generic platform (can’t start from
scratch for each project)
® Need to customize for many projects

Apply principle approaches (e.g.,
specialization)

Recognize the difficulties

Georgia I
Tech ||




Virtualization

® Some examples of virtualized systems
® Many choices of virtualization

® Specialization of virtualized systems

Georgia I
Tech )

HP Integrity Virtual Machines

®_Sub CPU virtual machines
with shared /O
® Resource guarantees as
low
as 5% CPU granularity
oot [ a2 | OS fault and security
isolation
Linux Windows Supports all (current and
e — future) HP Integrity
VM Host servers
Designed for multi OS
HP-UX 11i guest
Linux guest
Windows guest
OpenVMS guests in future

.y
Georgia | o
Tech ||




HP Integrity Virtual Machines

e HP Integrity VM

Multi-OS (HP-UX,
0s 0s 0s Linux, ...)

(Linux) (HP-UX) Others .
Sub-CPU granularity

I/O Device Sharing
Memory Isolation

e Benefits
Platform Manager Capacity on Demand

Software Development
Hardware and Testing
Rolling Update

-Vl i ||

Tech )

Dynamic CPU Allocation

Host (Integrity VM + platform OS)

Georgia |
Tech ||




Dynamic Networking Sharing

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3
0s ()

- -
- = -

H »st (Integrity VM + platform OS

s

Host (Integrity VM + platform OS)

Georgia I
Tech ||




Dynamic Network Bandwidth

0os
=OSm

- e |

> m

i swen | ViRGBTSGA

Host (Inte jiritv VM + platform OS)

I/O_Virtualization

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3

0s 0os

- - o

(25N N
v

Host (Integrity VM + platform OS)

Georgia I
Tech |




Software Fault Isolation

Georgia |
Tech|)

Guest 1

Virtual SCSI

Virtual
SCsi

- w%°1w°

Virtual Virtual
CPUs with

e disk I/Q
entitlements f———X

Virtual Machine Monitor (VMM) ﬁwl ||-
i Disks

' . ' . CPUs
_ VM Host S network

@

Georgia H
Tech |




Hosted VM Model

e Windows as “host”
Resources for each
VM alloc. from host L Process
All I/O with external
devices is performed Virtual Guest Code
through the host

® “Guest” runs within a

separate context

Independent address
space

Specialized “VMM”
N crnel Host Physical Machine
Georgia | 7
T=ch |

VMM Kernel

Thin layer, all in assembly
Code executed at ring-0
Exception handling

External Interrupt pass-
through

® Page table maintenance

o [.ocated within a 32MB
area known as the “VMM

work area”
. VMM
e Work area is relocatable .

e One VMM instance per
w21 processor Host Physical Machine
Georgia | 7
Ta:ch |




VMM Driver

Provides kernel-level VM-
related services
CreateVirtualMachine

Hostcontext Guest context

Virtual

CreateVirtualProcessor Server
ExecuteVirtualProcessor

Implements context

switching mechanism
between the host and guest
contexts

Loads and bootstraps

the VMM kernel

Security: repackaging the

VMM kernel code into the
driver

Georgia I
Ta:ch ||

NDIS Filter Driver

Allows VM to send and Host.context Guest context
receive Ethernet packets
via physical Ethernet Virtual

Server
hardware

Spoofs unique MAC
addresses for virtual NICs

Injects packets into host
Ethernet stack for guest-

to-hostnetworking E .
)

Host Physical Machine

VMM Kernel

Georgia I
Ta:ch |




Virtual PC/Virtual Server

e Device emulation modules Host context Guest
context

® Resource allocation
Virtual

® VM configuration creation PC

& editing
VM control (start, stop,
pause, save)

Guest Code

e Scripting APIs

e User interaction

e Host side of guest/host

integration features
VMM Kernel

I Host Physical Machine
Georgia |
Ta:ch ||

VM “Additions”

Host context Guest context

e Collection of components
installed within the guest , |
o Virtual Virtual
environment by the user PC Server

e Implement optimizations
Video
SCSI
Networking (in the future)
Guest kernel patches
e Implement guest half of
guest/host integration
features

Clipboard sharing

File drag and drop

h Arbitrary video resizing
Georgia |
Tech ||

Host Physical Machine




Specialization in VMs

e Efficient Packet Processing in User-Level
OS: Study of UML

® User-level OS: User-Mode Linux (UML)

Georgia I
Tech |

User-Level OS

® One form of system virtualization
® A ULOS = A process in host kernel
® Pros
Higher resource utilization
Fault and security isolation
Easy maintenance, installation, diagnosis
® Cons
Performance

Georgia I
Tech |




ULOS Architecture

Applications Applications

User-Level OS User-Level OS
Virtual Net Device Virtual Net Device

Virtual Net Device
(backend)

Host Operating System
NIC Driver

NIC Hardware

Georgia I
Tech )

Network Performance of
ULOS

® Maximum network throughput comparison

M Linux [ UML+Linux

TCP(4344) LUDP(8872) UDP(1472)
protocol(N), M = payload size

Georgia I
Tech ||




Why Slow?

® Privilege management
ULOS reuses the native kernel code
Impedance mismatch

® Memory management
Extra layers induce more copies

Virtual address translation

® Additional software instructions

More layers mean more instructions

Georgia I
Tech )

Layering Analysis

®User/ULOS crossing
Applications

@Packet processing in
User-Level OS / ULOS
Virtual Net Driver ®Virtual network device
Host Operating System

T—~—___ @Packet processing in
NIC Driver host kernel

Network Interface Card .
*\ ®Physical network

device
Georgia I
Tech ||




Comparing with Linux

UML+Linux

user/UML core crossing

packet processing (UML)

virtual network device

packet processing (host)

physical network device

user/kernel crossing

packet processing

physical network device

Georgia I
Tech )

Five Optimization Techniques

® User-level Signal Masking
® Aggregated System Calls
® Address Translation Cache
® Shared Socket Buffer

® Specialized Network Stack

® EUL: Enhanced User-mode Linux

Georgia I
Tech ||




User-Level Signal Masking

® Interrupt in host kernel = process signal in
ULOS

® Disabling interrupt = masking signals

® Masking signals using system calls is
expensive

® Solution: implement signal masking in user-
level

Georgia I
Tech )

ULSM Effect

UML+Linux

user/UML core crossing |:|

packet processing (UML) |:| |]
virtual network device |:| |:|

packet processing (host) |:||

physical network device |]

EUL+Linux : User-Level Signal Masking (ULSM)
user/UML core crossing

packet processing (UML)
virtual network device
packet processing (host)

physical network device

Georgia |
Tech ||




Aggregated System Calls

® To emulate system call services in ULOS

® ULOS core intercepts syscalls from an app
By using ptrace(), exit()

® Multiple calls of ptrace(), exit()

Passing and returning arguments, resuming and
waiting
Cause multiple boundary crossings

® Solution: aggregate multiple ptrace()s

30% reduction to ULOS system call invocation

.|
Georgia | g
Tech || "

Address Translation Cache

® Three address space — application, ULOS
core, host kernel

® Address translation from app to ULOS is
implemented in software

® Solution: TLB-like cache to speed up the
address translation

Georgia I
Tech ||




ATCA Effect

ULSM + Aggregated System Calls (AGSC)

user/UML core crossing
packet processing (UML)

virtual network device

packet processing (host)

physical network device

ULSM + AGSC

user/UML core crossing
packet processing (UML) i
virtual network device |
packet processing (host) |

physical network device

Georgia |
Tech )

Shared Socket Buffer

® Three different address spaces
Can have up to two copies
® One additional copy compared to native OS

® Solution: allocate shared memory between
ULOS and host kernel

No copy from ULOS core to host kernel
Reduced Up to 40% virtual NIC latency

Georgia I
Tech ||




Specialized Network Stack

® To reduce CPU instructions

® Specialize networks stack using quasi-
Invariant
I[P addresses, port numbers, sock options, ...

® Up to 13% reduced packet processing time

Georgia I
Tech |

Evaluation

® Experimental Setup

1GB network
Pentium4 3GHz, 512KB L2 Cache, 1GB mem

Ttcp for measuring network throughput

Linux, UML+Linux, EUL+Linux,
XenLinux+Xen

® Packet processing latency, max throughput
® Web server benchmark (httperf)

Georgia I
Tech |




Packet Processing Latency

-¢- UML+Linux
-H- EUL+Linux
—— Linux

Georgia I

Maximum Throughput

-
o
o
o

[0

o

o
L

—&— Linux
-#- EUL+Linux
- ¢- UML+Linux

D

o

o
L

PR

—&—Linux

-#- EUL+Linux
- 4- UML+Linux

0 T T T T

N
o
o
L
N » (o2} (o]
o o o o
o o o o
1 1 1 1

Max throughput (Mbits/s)

Max throughput (Mbits/s)

0

D NV % AV DS N L AL SN S TSN,  JP  BEN N PR B )

W F W S UM ARG N S L
Payload size (bytes) Payload size (bytes)

Georgia I



Web Server Throughput

—— Linux

—@- XenLinux+Xen
-B- EUL+Linux
-&- UML+Linux

49000000000

\} \ Q Q
Q Q Q QS
DN

Reqeusts / sec

e .
NN
NCNe

Georgia I
Tech |

Summary

® ULOS: a good use of virtualization
But, poor performance
® Optimization techniques can help

Comparable network throughput to native
Linux

Reduced latency by more than half
® Fast ULOS is possible and feasible

Georgia I
Tech |




Discussion

® Principled optimization of system code for
virtual environments

® How to apply principled code manipulation
in general for RTES?

Georgia I
Tech )

Quick Intro to AOP

® AOP — Aspect Oriented Programming
Kiczales et al, Xerox PARC

® AOP is a method to address serious
problems in large programs

Tangled code
® Slide credit: tutorials from Aspect].org

Georgia I
Tech ||




good modularity
XML parsing

® XML parsing in org.apache.tomcat

red shows relevant lines of code

Georgia I nicely fits in one box
Tech )

good modularity
URL pattern matching

EEEEEEEEEEEEEEE

e URL pattern matching in org.apache.tomcat

red shows relevant lines of code

Georgia I nicely fits in two boxes (using inheritance)
Tech ||




problems like...

logging is not modularized

® where is logging in org.apache.tomcat
red shows lines of code that handle logging

h not in just one place
Georgia | not even in a small number of places
Tech )

problems like...

session expiration is not modularized

ApplicationSession StandardSession

Sessioninterceptor StandardManager StandardSessionManager

ServerSession
ServerSessionManager

Georgia I
Tech |

aspectj.org




AOP idea

® Crosscutting is inherent in complex systems
have a clear purpose

have a natural structure

o defined set of methods, module boundary crossings,
points of resource utilization, lines of dataflows..

® Capture the structure of crosscutting
concerns explicitly...
in a modular way
with linguistic and tool support
® Aspects are
well-modularized crosscutting concerns

Georgia I
Tech )

AspectdJ Basics

® | overlay onto Java
dynamic join points
e “points in the execution” of Java programs
e 4 small additions to Java

pointcuts

¢ pick out join points and values at those points

— primitive, user-defined pointcuts

advice

¢ additional action to take at join points in a pointcut
inter-class declarations (aka “open classes™)
aspect

e a modular unit of crosscutting behavior

— comprised of advice, inter-class, l)ointcut,
- |
Georgia |
Tech ||

field,constructor and method declarations




AOP Summary

® AOP advantages

same benefits of good modularity

but for crosscutting concerns

at design and development-time
® Aspect] language

more: advice, inter-type declarations, cflow..,
® Aspect] tools

crosscutting structure is explicit

presented consistently in task-specific views

Georgia I
Tech )

Code Generation
and Distributed Systems
® Code generation since 1983 (RPC Stub Gen)

e Our focus is source-source translation

e Motivated by constant changes in requirements:

Changes due to external forces: merger/acquisitions;
standards formulation/adoption, industry evolution

Changes due to internal forces: goals, functionality
refinement, reuse to solve new (related) problems

® Generator should evolve with its target domain

Georgia I
Tech ||




£
“ N}\\"‘GAT@R Real-time Traffic Map

Georgia I
Tech )

Infopipe Infrastructure

® Information flow applications beyond static
RPC calls and web services

Continuous data creation, consumption
Data is “live”

® Heterogeneous platforms

® Dynamic environments

Georgia I
Tech ||



Three Key Challenges

Problem: Provide a toolkit for Infopipes that
offers

® Abstraction mapping
® Interoperable heterogeneity
® Flexible customization

It turns out, these are hard to do
simultaneously...here’s why

Georgia I
Tech |

Generator Requirements

e Extensible input
Mutable specifications
® Pliable generator
Accommodate mutable specifications
Partial implementations of target platforms
® Modular output

Customized solutions

Clearwater uses XML/XSLT to achieve E-P-M

Georgia I 116
Tech || '




Extensible Input

® DSLs are restricted to a problem

Frequently users ask for extensions
® Requirements/standards may change
e Want the ability to formulate new problems
® Practical utility

Specification grammar right the first time?

Georgia I
Tech )

Pliable Generator

® Input: Allows DSL content to change

® Output: Generator can implement partial
specifications
® Practical utility
Encourages experimentation & research

Implies low overhead changes

Georgia I
Tech ||




Modular Output

® Supports customization

® “One size fits all” code fits no one

® Orthogonality for aspects of a problem

® Offers hook for other input specifications

® Encourages customization reuse

Georgia I
Tech )

Clearwater Overview

e XML

Extensible input

e XSLT

Pliable generator

e Combined
Modular output

Georgia I
Tech ||




XML: Extensible input

® Easily extensible (through new elements)
e No grammar maintenance

e Few syntactic rules

- |
Georgia |

name="Sender"

Georgia I




XSLT: Pliable generator -
iInput
® Accommodate extensible input

® XPath 1s standard

® Programmatic interface with specification

Predicates are powerful extraction tools

® Structure-shy interaction model

Ignore what you don’t understand

Georgia I
Tech |

Example Pliability

¥
Georgia |h\ XPath: /xip//datatype//arg[@type=‘long’]
124
Tech ||



XSLT: Pliable generator -
output

® Support for new platforms

® Template invocation by name or pattern
® Stylesheets allows for imports

® Output templates can be shared

® Language independent (C, C++, Java)

e Allows XML to be inserted in templates

Georgia I
Tech )

XML+XSLT: Modular Output

® Combine extensibility of XML with XSLT

® Insert tags into XSLT to mark blocks of
code

® E.g. startup, marshall, unmarshall

® Allows post-generation changes through
XML weaving

Georgia I
Tech ||




Modularity Example

infopipe ue-of
return

Generator Template

// shutdown all our connections
int infopipe_ sender_ shutdown ()

{
// shutdown incoming ports

// shutdown outgoing ports
infopipe_ ppmOut_shutdown () ;

return 0;

Template Output

Customization example

ase

int infopipe ppmOut startup()
a = 0: ¢/ NULL pre inivially ¢ - -
lockupi "=, “aspectTest/receiver”, "pymin=, PUD
poet = steche| comminfe, '
poEtNum = Atoi{ poEt + 1] char *port;
*pert = 0; // mull tesm end of host nes int portiwn;
fyrint?(stéout, “Connection to A&ivd.
pymlutBocker = socket [PF_INET, S0CK_3T struct sockaddr_in sin;
Zin.2in_femily = AF_INET: struct hostent *hptr;
2dn.ain_poct = htons [portius) if (pthread create | &control thread id, NULL, control thread, NULL) !=0 }
hpEr = gethastbynams [ conninfe = = = =
wemepy {694,240 adde .5 _adde, hyte-h_adds_1iat[D t
1f{ comnect (ppawlutiocket, (Struct sockaddr *|és perror ("Unable to create control thread"):
fprimfstdece, "Unsble to T4 cxit (0] ;
fprints (stdecr, " At location ‘igiid'im\ )
ppmOut.data = 0; // NULL ptr initially
lookupi "", "aspectTest/receiver", "ppwIn"”, PUBLISH FILE, &eonninfo ):

port = strchr( conninfo, ')
portium = atoif port + 1 )
tport = 0: // null term end of host nsme

fprintf (stdout, "Connection to %3:%d) .
prwOutSockst = socker [PF_INET, SOCE_S New — yeIIOW 1S

sin.sin_family = AF_INET: CUStom Contr0|

sin.sin_port = htons(portlum]:

hptr = gethosthyname( conninfo | thread Creatlon Code

memcpy (Esin. sin_addr.s_addr, hptr->h_

if| connect (ppmOutSockst, [Struct so added to Startup
fprintf(stderr, "Unable to connect
fprintfiscderr, " &t location

char *conninfo;




Clearwater Generators

® [SG — horizontal domain
For Infopipes
Multi-platform
Supports Spi, GUI, WSLA
® ACCT - vertical domain
For enterprise application deployment

Maps Cauldron to SmartFrog or scripts

Georgia I
Tech )

1ISG

e XIP in, code out

Generate

e C or C++ language Code
output

e Choice of
communication pkg

Write Files

Makefiles
f‘fff“t *

.
e®




AXpect

Addresses
® Modular output

e XML tags map domain structures to code
(joinpoints)

e Use XSLT/XPath to find these tags (pointcuts)

e Augment/replace in gen’d code (advice)

e Allows multiple language weaving

Georgia I
Tech )

AXpect — Template

® Replaceable code example

Joinpoint __,
for startup
code in
template, / u coming ports for-each selec
start and arty
end

for-each selec
name artu

return 0}

Georgia |
Tech ||




AXpect - Aspect

fruct timeva )
<jpt:time-process>

C code

Joinpoint

Hile View Edit Graph Debug Help

Zizl@a =1 Zrnc/e miwm - ole

datatype ByteArray  databypeiArray  datatype FloatAsray s s profile

.-
—+ InRangaParameter=50 [ Sio I | Hia | [ Hio |

P portParameter s
v reg

fiter: G2

Filter- ENCRYPT
B 07 pirector e SHRINK flter GREY

b
e

= . .

o M Hio H fiterIPEG

ale

pipe:Recanar

3 slgnal processing
& [ domain
-




< DrODEMY M ="3rg Si2e" Chass ="Dtolemy

Infopipe XML description

"PAME” Class = EAciey: GaA e Paramener” value ="Bouot AT Squer,”

- Parumater

1o Typac

dann eape Parumeter

Ay =TI I s = DAY ACHOr Ty OMDUSSRACION >

<propey

</prope

name:
.

Ty eper ot

te

hoed” £iiss = plolesmry Kernel U Locunon” valse ="460.0, 225,075

Dr Paramerer” value ="Souon CIF aquat." >

CBIDDET NAmE = NAME" CATE =PIk D34 81
: fErere

e
«/propermy
PO Numa =" ClnSE =" lemy acer TYDEdIOPOT >

<EEATy RamE =T >

" Iotason” clasi e’

< forepertys

Lociticn” vakin="20.0, 200,075

", showhiarme” (iass =

= foreeertys

SO N Ol <O O
1y

PO NS U CAIE SOOI MO TVOHIOROT
Property name.

- Jotasor chass.

< jrepey>

=, shawhiame® s i

Wl Location”

i, AT Vil =" BGUOL IR AT UGS

vahie="580.0, 200.0°5

«fprepennys
ity namE s TR ClLLL = EESkT BA1A BIBE PArRTAtAr vk =" BaUGL VAT BAGUL ">

<DICEATY NAT =4 SI6" (1305 = EECIRTA 1A BADF PATAMBNS" VLS =" BIUOL e » TTE T0d minmBgerBauct

»

sy

i s, predile

Dipe Receives

SEPECIHIILAY

<jorogeys
ooy TR = "2 DU Class = DA 031 €D Paramener vahie =" Aquanname = DUt Type = Aringhau

<DICEATY NAT =4 SI6" (1305 = EECIRTA 1A BADF PATAMBNS" VLS =" BIUOL e » TTE T0d minmBgerBauct

<jprepertys
“oroeary AT "3 DUT class " ERsl dinn RABr Paramensr vk = Budtname = Guft TvEst = SringAau

< rc-r

QIR NAME =" EAIATDR fmm’.'rx.' clarsw"pesley acnor nnw:’nmmn amor >
= 5.0,

£DPEAM nAmS "ArD SI2E" TIRSS <

e

<jprepertys
< OEEAHTY N =" DT (S5 = EECHBTRY it £ADF PAFAMEnsr” vikie =" BQu0LNAMmE » DUt Tyod = RrngAau:
< fprepertye

< feni

oy

e Ty .n-F sRRATIDP
ORI ¥

ey 1308 e Param

60.07>
 Floatderindaques,">

P Ak« RauaL namE = STE TE = ImEgarEa)

<

 FAME TR GIIP Clags =
repsrty name =" Jacalien thass = pAckem

t/propemys
perty name = “mame” cliss = "plolemy dats expr Parameter” vilue="louot GIPEGuor ">

<

CRrODE famEn"

SOREFACton, class="pAtieny vergh

TymeaC s
Krel. uti Locatien

e

il "H6D.0, 225005

VisibhParameterEasscf acton

¥ 522 Cptony Gl ook SR Moty il Mtz Vi 70 Hilp

DPro@d s UBRIET




XIP-=> Gen code

I15G Demo

ISG Gen Code]\SG Demo SrC]Comﬁg]DumpiGraph]

* Demao Demo]Demo Src!ISL %

- Source Ele 0

SlEl <pipes=

- XIP

- GenCode <pipe name="Sender">

- Source (ISG) <ﬁa?;ép>ort name="out1" type="ByteArray"/>
* Config
i Dump i L=1 & n
* Graph <pipe name="Recelver'>

<inport name="in1" type="ByteArray'/>
</pipe=

</pipes>

<composedFipe name="UAV">
<pipes>
<pipe name="Sender" class="Sender"/>
<pipe name="Recelver" class="Recelver/>

rEacts:
3 levels

1 </pipes=>
Imag?i filters, <ppo’rjts>
general </ports>
comprelssmm <connections>
ERe <connection>

encryption

<from pipe="Sender" port="out1"/>

| Isngzﬁﬁg <to pipe="Receiver’ port="in1"/>
w <filters>

<filter name="SHRINK"/>
<filter name="GREY"/>
<filter name="GZIP"/>
<filter name="JPEG" >
<filter name="ENCRYPT"/x

m </filters> e
E1] ]|
7 Editable Save Gen Code =3P

.;'_;3. Infosphere, GaTech () hittp:ffwww . co.gatech.edu/projectsfinfosphere

C code

Joinpoint




0:Base
Code

e Just TCP
communication

e Binding,
connecting,
marshalling, etc

e No application
code

® No QoS

Georgia I
Tech )

1:Sende
Control

e Sender-side
Feedback
channel

e MUXSs control
messages

e Binds, connects
e TCP transport

Georgia I
Tech ||




e Implements SLA
pieces for sender

e Param’ed by the
WSLA

e Can send
messages over
the control
channel

® Responds to
receiver feedback

Georgia I
Tech )

The Entire
Infopipe
Application

Georgia I
Tech ||




Receiver-side
=z |2 gle|”|” R
g 223 3& g £ |8 mi | QoS code
9] o o
Aspect ST affects 13 of 18
timing : X X files (from 6
control_receiver X X X XX 125 \
cpumon X A}’xpect ﬁlCS>
sla_receiver X X X X X X
Sender-side
TRl 2]=2=[2]19=18 3
SEIEIE|L(2I81EE|F|FES
g 5|55 8|E|5 8 = | QoS code
@ o | & o [v]
o | &
Aspect O 012
control_receiver X X XX 117
sla_receiver X X X X X)) X
Total Aspect Lines 434
Base Implementation 976
Complete Application 1410
lcvll@

ISG: Template-based
Generation

e XSLT & Source
e Grab information

directly from XIP [ = S
b |

e ISG calls master =

template
e Parallel set for C++

e Amenable to refactoring

Georgia I
Tech ||



|ISG: Observations

® C and C++ generation can share templates
10% of template code at present

® Sharing between communications platforms
C TCP and ECho share about 20%

® Further factorizations might enhance code
sharing

Benefit: improved interoperability

Georgia I
Tech )

Staging of N-Tier Applications

(4) Reconfiguration

(3) Evaluation
(1) Design And
Analysis
Automated,
Evolutionary
Staging Cycle

(2) Code Generation
And
Deployment

Georgia I
Tech ||




ACCT Code Generator

® Input policy documents
Provide deployment constraints
Describe hardware and software

® Perform resource assignment (via Cauldron)
Output (MOF) has no execution support

® Translate into toolkit specifications

Target is SmartFrog

Georgia I
Tech )

ACCT

e MOF converted to an T

XML format WBEM MOF Compiler

M
® XML is pre-processed e

e

Intermediate
XML

—
2SI R >‘ Transform Factory
Ml languages
= |
Georgia | 1
Tech ||




ACCT Transformation

instance of LogicalServer {
Id = "Tomcat_LS1";
Caption = "Tomcat Logical Server";
Description i

HostName = "artemis.cc.gatech.edu™;
Y
instance of LogicalServerinLogicalApplication

LogicalApplication
LogicalServer =Tomcat_LS1\

instance of LogicalApplication {

instance of Activity {
‘Tomcat_Installation™;
ActivityTyp "script";

instance of Activity {
Id = "Tomcat_Installation™;
ActivityType = "script";

Instance of ActivityPredecessorActivity {
DependenceType="Finish-Start”;
AntecedentActivity="Tomcat_Installation”;

<Instance

Class="LogicalApplication">

lam: Type="string">Tomcat</Variable>
<Variable Name="Version"Type="string">
5.0.19</Variable>
<Variable Nam " Type="string">
ity_Tomcat_Installation</Variable>
<Variable Name="Host" Type="string">

<Workflow>
<Work Type="Execution”></Work>
<Work Typ:
<To> MySQLDriver_Installation</To></Work>
<Work Type="Terminate”>
Tomcat_Installation </Work>
</Workflow>
<Instance Name="MySQLDriv¢
Class="LogicalApplication"
<Variable Nam Type="string">
MySQLDriver</Variable>
<Variable Name="Version" Type="string">
3.0.11</Variable>
<Variable Name="Entity" Type="string">
Activity_ MySQLDriver_lInstallation</Variable:
<Variable Name="Host" Ty i
demete gate </Va
</Instance>

<Work Type="OnEvent”>
<From> Tomcat_Installation</From> </Work>
<Work Type="Execution”></Work>

MySQLDriver_Installation</Work>
</Workflow>

sfProcessComponentName "Tomcat_Installation";
LogicalApplication_Tomcat extends LogicalApplication {
Id "Tomcat";
Version "5.0.19'
Activity LAZY ATTRIB Activity_Tomcat_Installation;
sfProcessHost “artemis.cc.gatech.edu";

Activity_Tomcat_Installation extends Activity {
Id "Tomcat_Installation";
Entity LAZY ATTRIB LogicalApplication_Tomcat;

- extends EventSend {
sendTo eventQueue:queue_Tomcat_Ignition;
event "Activity_Tomcat_Installation_FS";

kill eventQueue:queue_Tomcat_Installation;

sfProcessComponentName "MySQLDriver_Installation™;
-- extends OnEvent {
registerWith queue_MySQLDriver_Installation ;
Activity_Tomcat_Installation_FS extends DoNothing

LogicalApplication_MySQLDriver extends LogicalApplicatio
Id "MySQLDriver";
Version "3.0.11
Activityl AZY ATTRIBACctivity_MySQLD!
sfProcessHost "demeter.cc.gatech.edu”;

r_Installation;

Activity_MySQLDriver_Installation extends Activity {
Id "MySQLDriver_Installation™;
Entity LAZY ATTRIB LogicalApplication_MySQLDriver;

ACCT: Observations

® Now reused inside another-tool

Mulini — enterprise application staging

e Extended to support new target

Shell scripts

Partial implementation (but low-cost)




Summary

e Extensibility, Pliability, Modularity
Good to have in distributed systems work
For us, modularity/AOP is great

® XML and XSLT support E-P-M
Examples in vertical, horizontal domains
Seem to have good generator modularity

® XSLT caveats

Can have heavy “syntax”
Looking for good replacements

Georgia I
Tech |

Discussion

® Principled manipulation of code (to
preserve correctness)
Specialization of source programs
Code generation (from specifications)

AOP in code generation and weaving

Georgia I
Tech |




