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Overall Structure (Day 1)

e Introduction to modern embedded systems

Ubiquitous computing as a vision forintegrating future
embedded systems

From embedded to resource constrained systems

Some basic techniques for constructing real-time
embedded system software

® Principled embedded software infrastructure

Survey of real-time scheduling algorithms: static,
dynamic priority, static priority dynamic

I/O processing and networking for embedded systems
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Overall Structure (Day 2)

® Automotive embedded software
architecture
Component-based software engineering
Case study on automotive embedded
software
e Sampling of methodical optimization of
embedded software
Specialization of system software
Code generation and translation
Aspect-oriented programming
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Study of Embedded System

® Cars are reasonably stable systems

Several years of development, with several
years of product half-life

Faster than airplanes (decades), slower than
hand sets (months)
® Credit to Crnkovic (Malardalen University,
Sweden) and their report.
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Vehicular Control System
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Figure 2.1 Basic elements of a control system

Functionality Evolution (99)
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Driver Assistance Infotainment and Telematics 5
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Adaptive cruise control Dynamic navigation R g
Stop & go control Speech recognition p)"o3—
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by wire
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Blind spot detection
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Lexus LS460 self-park feature (2007).



Electronic Control Unit (ECU)

ECU connectors
on top of the ECU

Figure 2.3 Mechanical embedding exemplified by the Scania diesel engine controller
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Figure 2.4 Mechanical embedding of a braking control system illustrating power supplies,
Gie power cabling, controllers, communication between controllers, and some sensor and
actuator elements.




Distributed Computer System
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Figure 2.5 Mapping of functionality to a hardware architecture including mechanical and
C electronic components, where the electronic components form a distributed computer systen

Typical ECU

® Electronic Control Unit (ECU)
Processor: 25MHz, 16-bit
128KB RAM, 1MB flash, 64KB EEPROM
Serial interface: RS232 or RS485
I/O: digital and analog ports

Controller Area Network (CAN)
e Developed by Bosch for cars (mid-80’s)
o High resilience to transmission errors
e Up to 1Mbit/sec
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ECU Structure

Application
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Figure 2.6 Structure of a node, part of the embedded distributed computer system. The

==

Volvo XC90
(comp. MDX, RX, etc)
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XC90 Highlights

e Software content: 10MB to 5S0MB (full options)

e Base configuration
Dynamic Stability and Traction Control (DSTC):
sensors on wheels, steering, car movement

Roll Stability Control with a gyroscopic sensor, using
DSTC

4-Channel Anti-Lock Braking System (ABS) with
weight sensors and Electronic Braking Assistance (skid
sensors)
e Full options
Forward collision warning, Blind spot detection
Volvo Navigational System with DVD Map and
Remote Control
=k car view camera, Telephone/telematics
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Figure 2.8. The electronic architecture of Volvo XC90.




Car Node Architecture

Application

Diagnostic
kerned

RTOS

Figure 2.9 The node architecture.

Architecture Components

® Main goal: Integration of components from
many suppliers
® Important functionality
Diagnostic kernel and services

Network communications software: Volcano
signals, CAN, LIN

RYNONHON] 2 CAYD)¢
I/0O devices
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VCE Requirements

® Large construction equipment

Articulated haulers, excavators, graders,
backhoe loaders, wheel loaders

® Requirement highlights
Less complex electronic systems/networks
Focus on safety, reliability and functionality,

Scalability of product variation, reusability,
componentization to lower software costs

Accommodate cheaper mechanical parts
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VCE Network Architecture

® Flexible allocation of control units

Map more of simple software components to a
smaller number of control units

SAE J1939 ' CAN

SAE JIS87 - JL708
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VCE Node Architecture

® Applications are control software

e System layer contains OS and middleware

ECU software system
Application layer
Communication Rubus OS
Hardware layer
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Rubus RTOS

® Green: interrupt handler, highest priority
® Red: hard real-time, static scheduler
Verifiable timing properties

® Blue: software real-time, preemptive fixed
priority scheduler

Basic Services
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Train Network Architecture
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Figure 2.13, the train communication network
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Train Node Architecture

Application Code

Basic Software Run-
Time

Standalone SiMON !
Download S}FE’ tem

Boot code
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Train Software Architecture

® Common Software Structures (hardwired)
Boot code

SiMon (signal monitor)
Standalone download
® Run-Time System
Run-time system initialization and startup
Run-time services
RTOS kernel: VxWorks
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Industrial Robotics (ABB S4)
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Robot Software Architecture

Application for Specifik Task
and Man Machine Interface

Control Interface, Fobot
Language and Extermal Interface

Motion Control of Eobot

General Support, OS5, 'O,
File System and Saftey
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e MTBF=60,000 Hours

e 2.5 MLOC
400 to 500.components

15 subsystems
e [solation: VxWorks
e System language; C

e Robot language:
RAPID

Robot Execution Model

® Event-driven IPC bus, similar to HW bus
® Successfully ported several times
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Development Challenges

® System integration
Many architectures and components
® Model-based development and architecture
® Mission-critical requirements
Dependability: safety, reliability, security
Scalability, development and evolution costs

e Component-based software engineering

® Automation vs. human factors

Georgia I
Tech |

Summary

® Software costs will dominate

Moore’s law and mechanical analogs (better
materials) reduce hardware size, weight, costs

More functionality provided by software

Planned obsolescence of hardware need
software glues to bridge the transition

® Different architectures and interfaces
Car, VCE, train, robotics

Bottom-up evolution
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Discussion

® Vehicular embedded systems

Application requirements: time scale,
cost/benefits, functionality, extra-functionality
properties

® Other applications

How much of the discussion will apply to
airplanes, and hand sets?
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Component-Based Lifecycle

® Applied to automotive embedded systems
e Component-based software engineering is
feasible for vehicular systems
System evolution not too fast

Critical safety requirements
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Product Lifecycle

® Idea/product requirement specification
® Development, manufacturing, maintenance

® Intellectual content/value of products
Higher value/functionality by weight/size
From bigger-is-better to smaller-is-better

Generic product lifecycle

Business Y Requirements Ny -\ Operation and .
> Idea > Management> De*elopmen> F'rc:-ductlor> I"u1aintenance> Dlsposal>

Figure 3.1. Product lifecycle

SW/HW Comparison

Detailed ; .\ Integration
> Reqmrement; i >Implementatlo> and Tes> Release>

Software Development

Detailed Conceptual |\ System-Level \ Detailed Testing and Production
Reguirementsf Development Design Design Refinement Ramp-Up

Hardware Development

Figure 3.2. Software and hardware development processes
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Waterfall Model

® Software development follows a well-
defined sequence of stages
Assumes each stage can freeze its output

Actually, each stage is a feedback loop with
continual refinements; propagate downstream,
amplifying its effects

Failures such as FBI Virtual Case File project

Detailed : : Integration
) Requirement> Design >Im?|ementatloi> = Tes> Release>

Waterfall + Prototyping (V Model)

Validate requirements

Requirements | geeccecocccmcccccaaaao- » |Acceptance
Analysis Testing
System | o ___Verfydesign _ ™ System
Design Testing

Program Yenfy units_ |\Unit & integration
design testing

\/




Component-Based
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HW/SW Differences

e Hardware developments usually start new (before
VLSI methods and tools)
Standard interfaces (110/220V, 50-60cycles)
Standard components (e.g., electronic systems)
e Software developments used to start new

Low software component availability (open source
software is recent)

Cultural/legacy programming practices
e Component-based software development
Start with components and their composition
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Component-Based Lifecycle

® Requirement analysis and definition

e Component selection and evaluation

® System design

® System integration

® Verification and validation

® System operation support and maintenance
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Component Development
Process
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Figure 3.5 shows different environments in a component life cycle.
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VCE Applications

® Application area: big machines
Volvo Construction Equipment
Embedded, Real-Time software

® Design and development method
Formal design specification language
Component-Based Software Engineering
Software tools using the design specs

Implementation by hand
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ABB Robotics

3 Requirements

| Product planning Process

Product development Process - HW

>. continuous process

New Releases

| Delivery/Logistics Process

| Sales Support Process

2.1

Figure 3.6, the main process and the sub-processes at ABB Robotics
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ECU Development (VCE)

Design Development
description model
‘ Application layer
e Rubus OS /o
Application | ——>4 Configuration I:>‘
Framework ‘ Hardware layer
Rubus OS ~
/0O
Development time Run time
Figure 3.8 Development and run time frameworks for an ECU
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Design Process
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Design Tools

Component Transaction
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Design Specs

® Data flow specifications
Data ports with types
Connections only with compatible types

Ordering, end-to-end deadline, start jitter,
completion jitter

® Control flow specifications
Event-based
Mandatory control sink (to activate the module)
Optional source (to activate others)
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Component Model

Data Intarface

Provided Ports
Required Ports

g/ Control Interbice

Component Sink Porl
—|2 I Source Port

Realisation

Data Coupling
Connected Data Ports

Control Coupling
Connectad Control Ports

Transaction
Includad Componants
~|End2End Deadline
+ |Jitter Requirements

Model Translation

e Component model design
Translation into run-time model
Fixed-priority scheduling run-time model

® Real-time analysis (e.g., schedulability)
Based on classic RT techniques (see below)

e Compile run-time model into code

Synthesis of target application and run-time
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Task Allocation

® Transactions divided into tasks
Worst Case Execution Time (WCET) analysis
Jitter requirements (Start and completion jitter)
® Synchronization among tasks
Data flow dependencies
® Time triggered and event triggered tasks
Period, jitter, WCET
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Schedulability Analysis

® Given a schedule (from the task allocation)

Test whether the schedule is feasible (tasks
completing before deadline) for FPS
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Code Synthesis

Ciata port connections
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Task Communications

® Inter Task Communication
Within the same tasks: shared data spaces
Different tasks: [IPC/RPC

® Links between sink and source
Scheduling of periodic tasks

Synchronization between source and sink

Middleware glue code

Georgia I
Tech ||




Portability from Middleware
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Figure 3.9 Development steps at VCE




Development Method (1)

Requirement engineering

Requirement analysis

High-level system decomposition
Operational modes and transitions

Function decomposition and structuring

Optimization using interrupt handlers as
efficient replacement for periodic tasks
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Development Method (2)

Mapping temporal constraints
Synchronization defined by precedence
Period, WCET, job start, deadline

Defining execution time budget

By experienced engineers

. Feasibility check and automatic

Georgia I
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implementation

Configuration compiler: pre-run-time
scheduler




Development Method (3)

VIII. Implementation and module testing

Write programs (modules) by hand [This
may be automated. ]

Module testing: functional/timing behavier
IX. System integration and verification
Putting it all together
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Findings (Development)

A design language is good

Design language supports RT analysis and
code synthesis

Trade-off between design time and
implementation time

Estimated execution time budgets useful
for early schedulability analysis
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Findings (Tech Transfer)

5. Tools, people, and support structure
needed for successful RT technology
transfer

Major roadblock is temporal requirements
(need all participants writing specs)
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Findings (Technical)

7. Task model too restrictive
Control jitters for simple controlles
Multirate controllers
8. Theoretical task models and schedulers
need to be extended for real-world apps
Schedule representation

Interrupt overhead (interrupt handlers used @as
optimized processes)
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Findings (Technical)

9. User feedback for schedulability analysis
and schedule modifications

Identification of problem and suggestions for
solution

10. Incremental scheduling to minimize
verification effort

Minor updates should incur minor costs
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Discussion

e Component-based approaches
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Introduction to CBSE

e Component-based software engineering as
“the newest mature method”

® Application of component-based software
engineering to vehicular systems
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Component-Based Software
Development

e Component-Based Software Engineering
Design philosophy
Reusing off-the-shelf building blocks

® Business of heavy vehicles (VCE)
Need low cost hardware
High reliability in the total system
High degree of customization, small volume
Need flexible software development
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Component-type
Spedific interface

Component
deployment

Basic Concepts

Interface that satisfies contracts

—

Component

Component

model

o

Component

Cooerdination Services

Framework

Figure 4.1. Relations between basic concepts of component technology
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CBSE Lifecycle

Component model Composition framework

Components

™~

Component Composition
Repository environment

Execution framework

Run-time
environment

Figure 4.2 Component technology for embedded systems




Vehicle Network Architecture

Technical Requirements

® Analysable (composability)
® Testable and debuggable

® Portable (HW, RTOS, networking)

® Resource constrained
Low cost hardware
Efficient software (comparable to non-CBSE)

e Component modeling
e Computational model
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Development Requirements

® Introducible (migration)
® Reusable

® Maintainable

® Understandable

For developers (simplify evaluation and
verification)

For users (improve acceptance)
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rec PECT
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Figure 4.3, UML class diagram of PECT concepts
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hat izthe SEl Approach to PACCY

o

Carnegie Mellon
= Software Engineering Institute

Prediction Enabled Component Technology s

Component Feasoning
Technology Frarnework
Added assumptions
Rules salisfies
Added \ _
Serices || invariants ||

The component technology ensures that components &
assemblies satisfy reasoning framewaork assumptions

— What isthe SEI Approach to PACCY

Carnegie Mellon
“— Software Engineering Institute

Prediction Enabled Component Technology 1o

Component o satisfes Feasoning
Technology Fram ewark
L
deployed satiales
- F 3
Fpecies e use a compesition language to

specify well-formed assemblies
« Ccurrently is a text-hased language
« nearly isomarphic with LML 2.0




— What isthe SEI Approach to PACCY
e Carnegie Mellon

—— Software Engineering Institute
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Koala

® Philips: consumer electronics
Light-weight component model
Mainly static composition of source code

® Interfaces

Component Description Language (bounding
interface): Provides, Requires.

Interface Definition Language (API)
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Koala Component Example

v v
init tuner
component FreqTuner{
provides lInit init;
Freunner ITuner tuner;
requires |Screen screen;
¥
screen
\
interface lInit{ interface ITuner{ interface |Screen{
void initialize(void); int getFrequence(void); void updatePicture
void setFrequency(int (void);
f); }

1

Figure 4.5, a Koala component

Rubus

® Rubus OS consists of three kernels achieving an
optimum solution.

® The Red Kernel, which is very small, manages
execution of pre-run-time scheduled time=
triggered Red threads

® The Blue Kernel is dedicated for execution of
event-triggered Blue threads

® The Green Kernel 1s dedicated for execution of
event-triggered Green threads (External Interrupts)

e Basic Services contains common services for the
three kernels
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Rubus Meta-Model

In port Composite
0"t
%7 1.% Configuration
Period Time
Port Release Time
type - Component Deadline
0.* WCET
% 1+ Precedence Relation
Out Port 0.” Task 1

Entry Function

Figure 4.6, A UML meta-model of the relations between different items|

Rubus Visual Studio
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Rubus OS Simulator

Application Interface

Ermranment

Simulation Ohject
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Port Based Objects

configuration
constants

'\
variable  xy —— port-based | ——— ¥ variable
inputports X, —— object ———» Ym output ports

I

resource ports, for
communication with sensors,
actuators, and other subsystems

Figure 4.7, Architectural view of a port based object




PBO Example

from trackball from robot: to robot:
sensors  actuators

Figure 4.8, a control application based on PBO

PECOS

® Pervasive Component Systems
ABB (ASEA Brown Boveri)
University of Karlsruhe (Germany)
OTI (Netherlands)
University of Berne (Switzerland)
® EC-IST project
€ 2.5M in two years (2000-2002)
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Focus of Project
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Figure 2 PECOS contribution to the different aspects of
innovation
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Figure 4.9, UML diagram showing the structure of a component




PECOS Example

setFoint

PrecessApplication

FQD

actualPosition

setPoint

actualPosition velocity
I / |
velocity
: ModBus
setFrequency O
setFrequency

Figure 4.10, A composite component

|[EC 61131-3 Standard

X

Access path

Configuration
Resource Resource
Task Task Task Task
Function
\ Block
-
Program Progra Program Program
FBHFE FBHFE]
Execution

control path

4.11, a graphical view of the elements covered in the IEC 61131




FUNCTION BLOCK
(** External Interface **)
1
: EXAMPLE
1
I

BOOL ----4 IN
TIME SES] DB TIME

_________________________

|
i A !
| |
IN - I Y be--
o 16
1
1
1
I
=t |
! a o
| ::
|
DB TIME ____.J | X Y pes
: o PP
: i

END FUNCTION BLOCK

CORBA Architecture
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Comparison & Evaluation

Source Code Components

Analysable

Testable and debugable
Portable

Resource Constrained
Component Modelling
Computational Model
Introducible

Reusable
Maintainable
Understandahle

Static Configuration
Average

Number of 2°s
Number of 0°s

£
£
£
£
£
£
£

PECT
Koala o 1 1 2 o0 2 0 2 2 2 2 2|13 7 3
Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 2]J13 5 2
PBO 2 1 0 0 0 1 1 1 1 2 2 ofoe 3 4
PECOS 2 1 2 2 0 2 1 2 1 2 0 2|14 7 2
CORBA Based Technologies 0 1 1 0 0 0 2 0 o0 1 o o004 1 8
Average 12 1.0 10 12 00 14 14 12 10 15 12 12]11 43 35

Development Challenges

® Advanced features vs. limited resources
(light-weight implementation)

® Standard specification of component
properties and interfaces

® Obtaining and predicting extra-functional
component properties: timing, performance,
dependability, etc

® Platform and vendor independence
(standards), quality certification, isolation

® CBSE Tools
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Research Priorities

® Predicting system properties
Given component properties
Predict integrated system properties
Guaranteeing system properties

® Component models for real-time systems
Widely accepted model and specification

Generating run-time infrastructure, contract
monitors, and other shared functionality
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Discussion

® CBSE as an advanced software engineering
discipline
® New systems building techniques
Web services and services computing (SOA)

Code generation and AOP
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