
CS 6235 5/29/2007

QoS Semantics 1

1

Summer Institute on Summer Institute on
Software ArchitectureSoftware Architecture

Embedded Systems ArchitectureEmbedded Systems Architecture
3: 3: Vehicular Case StudyVehicular Case Study

Instructor: Calton Pu
calton.pu@cc.gatech.edu

© 2001, 2004, 2007 Calton Pu and Georgia Institute of Technology

2

Overall Structure (Day 1)Overall Structure (Day 1)
Introduction to modern embedded systems
– Ubiquitous computing as a vision for integrating future

embedded systems
– From embedded to resource constrained systems
– Some basic techniques for constructing real-time

embedded system software

Principled embedded software infrastructure
– Survey of real-time scheduling algorithms: static,

dynamic priority, static priority dynamic
– I/O processing and networking for embedded systems

CS 6235 5/29/2007

QoS Semantics 2

3

Overall Structure (Day 2)Overall Structure (Day 2)
Automotive embedded software
architecture
– Component-based software engineering
– Case study on automotive embedded

software
Sampling of methodical optimization of
embedded software
– Specialization of system software
– Code generation and translation
– Aspect-oriented programming

4

Study of Embedded SystemStudy of Embedded System

Cars are reasonably stable systems
– Several years of development, with several

years of product half-life
– Faster than airplanes (decades), slower than

hand sets (months)
Credit to Crnkovic (Malardalen University,
Sweden) and their report.

CS 6235 5/29/2007

QoS Semantics 3

5

Vehicular Control SystemVehicular Control System

6

Functionality Evolution (99)Functionality Evolution (99)

MDX
’03

RL’0
5

OnSt
ar’00

Lexus LS460 self-park feature (2007).

CS 6235 5/29/2007

QoS Semantics 4

7

Electronic Control Unit (ECU)Electronic Control Unit (ECU)

8

CS 6235 5/29/2007

QoS Semantics 5

9

Distributed Computer SystemDistributed Computer System

10

Typical ECUTypical ECU

Electronic Control Unit (ECU)
– Processor: 25MHz, 16-bit
– 128KB RAM, 1MB flash, 64KB EEPROM
– Serial interface: RS232 or RS485
– I/O: digital and analog ports
– Controller Area Network (CAN)

Developed by Bosch for cars (mid-80’s)
High resilience to transmission errors
Up to 1Mbit/sec

CS 6235 5/29/2007

QoS Semantics 6

11

ECU StructureECU Structure

12

Volvo XC90 Volvo XC90
(comp. MDX, RX, etc)(comp. MDX, RX, etc)

CS 6235 5/29/2007

QoS Semantics 7

13

XC90 HighlightsXC90 Highlights
Software content: 10MB to 50MB (full options)
Base configuration
– Dynamic Stability and Traction Control (DSTC):

sensors on wheels, steering, car movement
– Roll Stability Control with a gyroscopic sensor, using

DSTC
– 4-Channel Anti-Lock Braking System (ABS) with

weight sensors and Electronic Braking Assistance (skid
sensors)

Full options
– Forward collision warning, Blind spot detection
– Volvo Navigational System with DVD Map and

Remote Control
– Rear view camera, Telephone/telematics

14

Complexity of Current CarsComplexity of Current Cars

CS 6235 5/29/2007

QoS Semantics 8

15

Car Node ArchitectureCar Node Architecture

16

Architecture ComponentsArchitecture Components

Main goal: Integration of components from
many suppliers
Important functionality
– Diagnostic kernel and services
– Network communications software: Volcano

signals, CAN, LIN
– RTOS: OSEK/VDX
– I/O devices

CS 6235 5/29/2007

QoS Semantics 9

17

VCE RequirementsVCE Requirements

Large construction equipment
– Articulated haulers, excavators, graders,

backhoe loaders, wheel loaders
Requirement highlights
– Less complex electronic systems/networks
– Focus on safety, reliability and functionality
– Scalability of product variation, reusability,

componentization to lower software costs
– Accommodate cheaper mechanical parts

18

VCE Network ArchitectureVCE Network Architecture

Flexible allocation of control units
– Map more of simple software components to a

smaller number of control units

CS 6235 5/29/2007

QoS Semantics 10

19

VCE Node ArchitectureVCE Node Architecture

Applications are control software
System layer contains OS and middleware

20

RubusRubus RTOSRTOS

Green: interrupt handler, highest priority
Red: hard real-time, static scheduler
– Verifiable timing properties

Blue: software real-time, preemptive fixed
priority scheduler

CS 6235 5/29/2007

QoS Semantics 11

21

Train Network ArchitectureTrain Network Architecture

22

Train Node ArchitectureTrain Node Architecture

CS 6235 5/29/2007

QoS Semantics 12

23

Train Software ArchitectureTrain Software Architecture

Common Software Structures (hardwired)
– Boot code
– SiMon (signal monitor)
– Standalone download

Run-Time System
– Run-time system initialization and startup
– Run-time services
– RTOS kernel: VxWorks

24

Industrial Robotics (ABB S4)Industrial Robotics (ABB S4)

CS 6235 5/29/2007

QoS Semantics 13

25

Robot Software ArchitectureRobot Software Architecture
MTBF=60,000 Hours
2.5 MLOC
– 400 to 500 components
– 15 subsystems

Isolation: VxWorks
System language: C
Robot language:
RAPID

26

Robot Execution ModelRobot Execution Model

Event-driven IPC bus, similar to HW bus
Successfully ported several times

CS 6235 5/29/2007

QoS Semantics 14

27

Development ChallengesDevelopment Challenges

System integration
– Many architectures and components

Model-based development and architecture
Mission-critical requirements
– Dependability: safety, reliability, security
– Scalability, development and evolution costs

Component-based software engineering
Automation vs. human factors

28

SummarySummary

Software costs will dominate
– Moore’s law and mechanical analogs (better

materials) reduce hardware size, weight, costs
– More functionality provided by software
– Planned obsolescence of hardware need

software glues to bridge the transition
Different architectures and interfaces
– Car, VCE, train, robotics
– Bottom-up evolution

CS 6235 5/29/2007

QoS Semantics 15

29

DiscussionDiscussion

Vehicular embedded systems
– Application requirements: time scale,

cost/benefits, functionality, extra-functionality
properties

Other applications
– How much of the discussion will apply to

airplanes, and hand sets?

30

ComponentComponent--Based LifecycleBased Lifecycle

Applied to automotive embedded systems
Component-based software engineering is
feasible for vehicular systems
– System evolution not too fast
– Critical safety requirements

CS 6235 5/29/2007

QoS Semantics 16

31

Product LifecycleProduct Lifecycle

Idea/product requirement specification
Development, manufacturing, maintenance
Intellectual content/value of products
– Higher value/functionality by weight/size
– From bigger-is-better to smaller-is-better

32

SW/HW ComparisonSW/HW Comparison

CS 6235 5/29/2007

QoS Semantics 17

33

Waterfall ModelWaterfall Model

Software development follows a well-
defined sequence of stages
– Assumes each stage can freeze its output
– Actually, each stage is a feedback loop with

continual refinements; propagate downstream,
amplifying its effects

– Failures such as FBI Virtual Case File project

34

Waterfall + Prototyping (V Model)Waterfall + Prototyping (V Model)

CS 6235 5/29/2007

QoS Semantics 18

35

ComponentComponent--Based Based

36

HW/SW DifferencesHW/SW Differences
Hardware developments usually start new (before
VLSI methods and tools)
– Standard interfaces (110/220V, 50-60cycles)
– Standard components (e.g., electronic systems)

Software developments used to start new
– Low software component availability (open source

software is recent)
– Cultural/legacy programming practices

Component-based software development
– Start with components and their composition

CS 6235 5/29/2007

QoS Semantics 19

37

ComponentComponent--Based LifecycleBased Lifecycle

Requirement analysis and definition
Component selection and evaluation
System design
System integration
Verification and validation
System operation support and maintenance

38

Component Development Component Development
ProcessProcess

CS 6235 5/29/2007

QoS Semantics 20

39

VCE ApplicationsVCE Applications

Application area: big machines
– Volvo Construction Equipment
– Embedded, Real-Time software

Design and development method
– Formal design specification language
– Component-Based Software Engineering
– Software tools using the design specs
– Implementation by hand

40

ABB RoboticsABB Robotics

CS 6235 5/29/2007

QoS Semantics 21

41

ECU Development (VCE)ECU Development (VCE)

42

Design ProcessDesign Process

CS 6235 5/29/2007

QoS Semantics 22

43

Design ToolsDesign Tools

44

Design SpecsDesign Specs
Data flow specifications
– Data ports with types
– Connections only with compatible types
– Ordering, end-to-end deadline, start jitter,

completion jitter
Control flow specifications
– Event-based
– Mandatory control sink (to activate the module)
– Optional source (to activate others)

CS 6235 5/29/2007

QoS Semantics 23

45

Component ModelComponent Model

46

Model TranslationModel Translation

Component model design
– Translation into run-time model
– Fixed-priority scheduling run-time model

Real-time analysis (e.g., schedulability)
– Based on classic RT techniques (see below)

Compile run-time model into code
– Synthesis of target application and run-time

CS 6235 5/29/2007

QoS Semantics 24

47

Task AllocationTask Allocation

Transactions divided into tasks
– Worst Case Execution Time (WCET) analysis
– Jitter requirements (Start and completion jitter)

Synchronization among tasks
– Data flow dependencies

Time triggered and event triggered tasks
– Period, jitter, WCET

48

Schedulability AnalysisSchedulability Analysis

Given a schedule (from the task allocation)
– Test whether the schedule is feasible (tasks

completing before deadline) for FPS

CS 6235 5/29/2007

QoS Semantics 25

49

Code SynthesisCode Synthesis

50

Task CommunicationsTask Communications

Inter Task Communication
– Within the same tasks: shared data spaces
– Different tasks: IPC/RPC

Links between sink and source
– Scheduling of periodic tasks
– Synchronization between source and sink
– Middleware glue code

CS 6235 5/29/2007

QoS Semantics 26

51

Portability from MiddlewarePortability from Middleware

52

CS 6235 5/29/2007

QoS Semantics 27

53

Development Method (1)Development Method (1)

I. Requirement engineering
II. Requirement analysis
III. High-level system decomposition

Operational modes and transitions
IV. Function decomposition and structuring

Optimization using interrupt handlers as
efficient replacement for periodic tasks

54

Development Method (2)Development Method (2)

V. Mapping temporal constraints
Synchronization defined by precedence
Period, WCET, job start, deadline

VI. Defining execution time budget
By experienced engineers

VII. Feasibility check and automatic
implementation

Configuration compiler: pre-run-time
scheduler

CS 6235 5/29/2007

QoS Semantics 28

55

Development Method (3)Development Method (3)

VIII. Implementation and module testing
Write programs (modules) by hand [This
may be automated.]
Module testing: functional/timing behavior

IX. System integration and verification
Putting it all together

56

Findings (Development)Findings (Development)

1. A design language is good
2. Design language supports RT analysis and

code synthesis
3. Trade-off between design time and

implementation time
4. Estimated execution time budgets useful

for early schedulability analysis

CS 6235 5/29/2007

QoS Semantics 29

57

Findings (Tech Transfer)Findings (Tech Transfer)

5. Tools, people, and support structure
needed for successful RT technology
transfer

6. Major roadblock is temporal requirements
(need all participants writing specs)

58

Findings (Technical)Findings (Technical)

7. Task model too restrictive
Control jitters for simple controlles
Multirate controllers

8. Theoretical task models and schedulers
need to be extended for real-world apps

Schedule representation
Interrupt overhead (interrupt handlers used as
optimized processes)

CS 6235 5/29/2007

QoS Semantics 30

59

Findings (Technical)Findings (Technical)

9. User feedback for schedulability analysis
and schedule modifications

Identification of problem and suggestions for
solution

10. Incremental scheduling to minimize
verification effort

Minor updates should incur minor costs

60

DiscussionDiscussion

Component-based approaches

CS 6235 5/29/2007

QoS Semantics 31

61

Introduction to CBSEIntroduction to CBSE

Component-based software engineering as
“the newest mature method”
Application of component-based software
engineering to vehicular systems

62

ComponentComponent--Based Software Based Software
DevelopmentDevelopment

Component-Based Software Engineering
– Design philosophy
– Reusing off-the-shelf building blocks

Business of heavy vehicles (VCE)
– Need low cost hardware
– High reliability in the total system
– High degree of customization, small volume
– Need flexible software development

CS 6235 5/29/2007

QoS Semantics 32

63

Basic ConceptsBasic Concepts

64

CBSE LifecycleCBSE Lifecycle

CS 6235 5/29/2007

QoS Semantics 33

65

Vehicle Network ArchitectureVehicle Network Architecture

66

Technical RequirementsTechnical Requirements
Analysable (composability)
Testable and debuggable
Portable (HW, RTOS, networking)
Resource constrained
– Low cost hardware
– Efficient software (comparable to non-CBSE)

Component modeling
Computational model

CS 6235 5/29/2007

QoS Semantics 34

67

Development RequirementsDevelopment Requirements

Introducible (migration)
Reusable
Maintainable
Understandable
– For developers (simplify evaluation and

verification)
– For users (improve acceptance)

68

PECTPECT
Prediction-
Enabled
Component
Technology

CS 6235 5/29/2007

QoS Semantics 35

69

70

CS 6235 5/29/2007

QoS Semantics 36

71

72

KoalaKoala

Philips: consumer electronics
– Light-weight component model
– Mainly static composition of source code

Interfaces
– Component Description Language (bounding

interface): Provides, Requires.
– Interface Definition Language (API)

CS 6235 5/29/2007

QoS Semantics 37

73

Koala Component ExampleKoala Component Example

74

RubusRubus
Rubus OS consists of three kernels achieving an
optimum solution.
The Red Kernel, which is very small, manages
execution of pre-run-time scheduled time-
triggered Red threads
The Blue Kernel is dedicated for execution of
event-triggered Blue threads
The Green Kernel is dedicated for execution of
event-triggered Green threads (External Interrupts)
Basic Services contains common services for the
three kernels

CS 6235 5/29/2007

QoS Semantics 38

75

RubusRubus MetaMeta--ModelModel

76

RubusRubus Visual StudioVisual Studio

CS 6235 5/29/2007

QoS Semantics 39

77

RubusRubus OS SimulatorOS Simulator

78

Port Based ObjectsPort Based Objects

CS 6235 5/29/2007

QoS Semantics 40

79

PBO ExamplePBO Example

80

PECOSPECOS

Pervasive Component Systems
– ABB (ASEA Brown Boveri)
– University of Karlsruhe (Germany)
– OTI (Netherlands)
– University of Berne (Switzerland)

EC-IST project
– € 2.5M in two years (2000-2002)

CS 6235 5/29/2007

QoS Semantics 41

81

Focus of ProjectFocus of Project

82

PECOS PECOS
Compo. Compo.
StructureStructure

CS 6235 5/29/2007

QoS Semantics 42

83

PECOS ExamplePECOS Example

84

IEC 61131IEC 61131--3 Standard3 Standard

CS 6235 5/29/2007

QoS Semantics 43

85

IEC IEC
61131 61131

ExampleExample

86

CORBA ArchitectureCORBA Architecture

CS 6235 5/29/2007

QoS Semantics 44

87

Comparison & EvaluationComparison & Evaluation

88

Development ChallengesDevelopment Challenges
Advanced features vs. limited resources
(light-weight implementation)
Standard specification of component
properties and interfaces
Obtaining and predicting extra-functional
component properties: timing, performance,
dependability, etc
Platform and vendor independence
(standards), quality certification, isolation
CBSE Tools

CS 6235 5/29/2007

QoS Semantics 45

89

Research PrioritiesResearch Priorities

Predicting system properties
– Given component properties
– Predict integrated system properties
– Guaranteeing system properties

Component models for real-time systems
– Widely accepted model and specification
– Generating run-time infrastructure, contract

monitors, and other shared functionality

90

DiscussionDiscussion

CBSE as an advanced software engineering
discipline
New systems building techniques
– Web services and services computing (SOA)
– Code generation and AOP

