

Discussion of EDF

- Optimal dynamic scheduler
 Why do we need anything else?
- Several practical problems
 - Overhead of dynamic scheduling
 - Instability under overload (over the cliff)
 - "Priority inversion"

Georgia Tech

"Best Effort" Scheduling

Minimum laxity first (MLF)

- Laxity = time to latest feasible start time (when the job can still complete)
- Run the job closest to failing first
- Optimal in minimizing deadline failures
- Earliest-Deadline First (EDF) also optimal
- MLF = EDF when jobs have same length

Georgia Tech

"Fixing Ada for RT"

- Adopt priority ceiling protocol (p. 60)
 Monitor task guards critical section (fig. 4)
 <u>Priority ceiling emulated by run-time</u>
- Difficulties with Ada specification
 - Monitor task cannot suspend itself (no I/O)
 - Sporadic server for aperiodic tasks
 - Disallow Ada fixed priorities
 - Get around FIFO queues

Georgia Tech

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Scheduling Mechanism

- Reservation scheduler
 - based on proportion and period
 - uses rate-monotonic scheduling
 - allocations enforced during process dispatch
 - allows fine granularity allocation adjustment
 - low overhead for changing reservations
 - respects reservations for applications that specify them

Georgia Tech

System Overhead Maximum Interface Throughput			
	TCP Stream Maximum Throughput	UDP Unidirectional Stream Maximum <u>Thronghput</u>	CPU Utilization for full TCP throughput
Linux 2.0.35	7.41 Mbits/s	9.41 Mbits/s	2.5%
Linux with our Packet Scheduler	7,41 Wbits/s	9,41 Mbits/s	2.93%
eorgia Tech			92

Message Classification

- Synchronous messages
 - Periodic, predictable stream (sensor data)
 - Arrival time: job creation
 - Length: job resource requirement
 - Deadline: job completion requirement
- Asynchronous messages
 - Aperiodic task communications, alerts
 - Unpredictable arrivals, length, deadline

105

Georgia Tech

Periodic server: reserved bandwidth (affects synchronous messages)

Conservative estimation: worst case analysis of all messages (under-utilization)

Dynamic reservations: control message to reserve future bandwidth (overhead)

117

Georgia Tech

MLF in Networking

- MLF in bandwidth scheduling
 Send first the messages w/ minimum laxity
- Some drawbacks when priority-based
 - Overhead in priority arbitration

Georgia Tech

- MLF requires dynamic re-prioritization
- Priority inversion due to insufficient number of priority levels

119

Scheduling Algorithms

- Rate monotonic for periodic jobs
 Shorter period gets higher priority
 Tight worst case achievable utilization
- Minimum laxity first for aperiodic jobs
 - Closer to failure gets higher priority
 - Optimal in minimization of failures

121

Related to EDF

Georgia

Tech

