Summer Institute on
Software Architecture

Embedded Systems Architecture
2: Real-Time Techniques

Instructor: Calton Pu

calton.pu@cc.gatech.edu

- |
Ge‘.:l’.regéﬂ ﬁlil © 2001, 2004, 2007 Calton Pu and Geor S SGUIEIOTCCATOIGE

Overall Structure (Day 1)

® Introduction to modern embedded systems
Ubiquitous computing as a vision for.integrating future
embedded systems
From embedded to resource constrained systems
Some basic techniques for constructing real-time
embedded system software

e Principled embedded software infrastructure
Survey of real-time scheduling algorithms: statie,
dynamic priority, static priority dynamic
I/0 processing and networking for embedded
systems

Georgia I
Tech ||




Static Predictability

® RTES: satisfying the time constraints

Certain assumptions about workload and
sufficient resource availability

Certify at “design time” that all the timing
constraints of the application will be met

® For static systems, 100% guarantees can be
given at design time

Immutable workload and system resources

System must be re-certified if anything changes

Georgia I
Tech )

Dynamic Predictability

® Dynamic systems: not statically defined
Changeable system configuration
Changeable workload

® Dynamic predictability
Under appropriate assumptions (sufficient
resources)

Tasks will satisfy time constraints

Georgia I
Tech ||




Earliest Deadline First

® Assumptions
The schedule is feasible
Tasks are independent

® Dynamic priority scheduler
Look at all tasks in the queue
Compare their deadlines
Earliest Deadline First (EDF)

® Minimizes deadline failures when feasible

Another story when schedule is infeasible

Georgia I
Tech )

EDF Basics

® Optimal dynamic priority scheduling

® A task with a shorter deadline has a higher
priority

® Executes a job with the earliest deadline

T,(4,1) .
LD

5 10 15
L2 S
5 10 15

Georgia I 6
Tech ||




EDF Example

® When the schedule is feasible, EDF can
schedule it

® No need for preemption

G2 1R -
T2 - %

I
Georgia |
Tech || ’

EDF Optimality

® Optimal scheduling algorithm

Up to 100% WCAU (Worst Case Achievable
Utilization)

e Intuition: can't lose the “most urgent job"

gCRIAEE R AR R
’(52)“ ] ,
ERVY - ] - -

I
Georgia | L
Tech | ’




Discussion of EDF

® Optimal dynamic scheduler
Why do we need anything else?

® Several practical problems
Overhead of dynamic scheduling
Instability under overload (over the cliff)

“Priority inversion”

Georgia I
Tech |

Minimum Laxity First

® Similar to EDF, improved

Laxity = time to latest feasible start time (when
the task can still complete)

Run the task closest to failing first
Optimal in minimizing deadline failures

More graceful degradation

® Comparison with EDF
MLF = EDF when all tasks have same length

Georgia I
Tech |




Discussion

® Limitations of static schedulers
e Limitations of dynamic priority schedulers

® How can we create dynamic schedulers
with static priorities?

Georgia I
Tech )

Rate Monotonic Scheduler

® Classic hard real-time CPU scheduler
Preemption-based
Independent tasks

® Static scheduler: fixed priorities
No dynamic priority adjustments

Not a static schedule

Georgia I
Tech ||




RM Algorithm

® Main components
Periodic tasks, marked by start and end
Priority-based preemption
Shorter period tasks get higher priority

o i S

Georgia I
Tech )

Time line

Crucial Zone Theorem

® Only need to check the first period

If tasks make their first deadline, then they can
make the following deadlines

Time line

Georgia I
Tech ||




Discussion of RM

® Zhao’s evaluation criteria

CPU utilization: guaranteed theoretical WCAU
limit of 0.693 for CPU

Robustness: OK if below the 0.693 limit
Timing fault: limited by preemption
Aperiodic jobs: high priority until the 0.693
WCAU limit

Run-time overhead: may be high

Georgia I
Tech )

Another Discussion

® Sha’s list of advantages

Georgia I

Fixed priorities: easy management
Aperiodic tasks: sporadic server, etc
Synchronization: priority ceiling, etc
Imprecise computations

Ease of implementation

Tech ||



Transient Overload

® Variable task CPU consumption
Worst case may be too stringent

Guarantee a set of critical tasks for the worst
case (WCAU)

Add other tasks at lower priorities
® During overload

Set of highest priority tasks run “normally”
(continue to be guaranteed)

Georgia I
Tech |

Period/Priority Mismatch

® Q: high priority task, but long period?
® A: period transformation (task slicing)
Divide the task into k& pieces
Run each piece in its own period, size p/k
Original task completed with the last piece
e Complications and issues
Context switch overhead (k times)
Portability, synchronization

Georgia I
Tech |




Aperiodic Tasks

® Two kinds of aperiodic tasks
High priority: emergency alerts
Low priority: background jobs

® Problem with background jobs
Neglected during transient overload
Long response time (example 3, p. 56)

S

.| 99 1
Georgia |
Tech )

High Priority Aperiodic

® Aperiodic server
Pretends to be a high priority periodic task
Sub-schedules its allotted time slices

Can preempt normal periodic tasks
e Constraints and issues

Pre-allocation counts towards WCAU limit

Independent replenishment and overload
handling policies

Georgia I
Tech ||




Task Synchronization

® Priority inversion (example 4, p. 57)

Priorities combined with locking

T3 holding lock(A), is preempted by Tl, which
needs lock(A)

T1 waits for T3, and T3 waits for T2
e Examples of remedies

No preemption when holding lock(A) - also
introduces priority inversion

Georgia I
Tech |

Priority Ceiling Protocol

® Priority inheritance
If T1 waits for T3, then T3 gets T1 priority

® Dynamic rescheduling
Critical sections execute at highest priority
Waiting is outside critical sections
Highest priority waiting task runs next

Critical section becomes a subroutine of the
highest priority waiting task

Georgia I
Tech |




Advantages of PC

® Deadlock free (example 5, p. 57)

Critical section always runs

Waiting is outside critical sections

T2 prevents T1 from getting lock (fig. 2)
® Bounded priority inversion

High priority tasks “jump over” queues
® Good schedulability tests

Georgia I
Tech )

Further Discussion of PC

® Priority inversion
Low priority tasks in critical sections become
high priority
Tasks w/o critical sections may wait

® Execution overhead

Every critical section needs a priority queue

Georgia I
Tech ||




“‘Best Effort” Scheduling

® Minimum laxity first (MLF)

Laxity = time to latest feasible start time (when
the job can still complete)

Run the job closest to failing first

Optimal in minimizing deadline failures
Earliest-Deadline First (EDF) also optimal
MLF = EDF when jobs have same length

Georgia I
Tech )

Ada Case Study

® Designed for “safe” programming
Predictable program properties
Real-time a big application target (AF)
One way to do each task

e Some difficulties with real-time
Non-deterministic task scheduling
Prioritized tasks queued in FIFO order
No dynamic change of task priorities

Georgia I
Tech ||




“Fixing Ada for RT”

® Adopt priority ceiling protocol (p. 60)
Montitor task guards critical section (fig. 4)
Priority ceiling emulated by run-time

e Difficulties with Ada specification
Monitor task cannot suspend itself (no I/O)
Sporadic server for aperiodic tasks
Disallow Ada fixed priorities

Get around FIFO queues

Georgia I
Tech )

RM: Average Case Analysis

® Stochastic characterization

Most likely (average) workload, described by
cumulative distribution function (CDF)

Utilization determined by scaling workload

® Asymptotic approximation

Probabilistic density function of utilization
calculated from CDF plus assumptions

U depends only on task period, not length

Georgia I
Tech ||




Discussion

® Rate monotonic is “state of art” for RTES
scheduling

Limitations of RM and static schedulers

® Adaptive approaches for unpredictable
environments

What principles can we apply?

Georgia I
Tech )

Control Systems

e Systems with changes
Human-controlled: bicycle, cars, airplane
Inherently unstable airplane wings
Chemical reactions, nuclear power plants

® Basic assumptions
Changes are within a certain range

Changes are “continuous” (physical world)

Georgia I
Tech ||




Feedback Approach

® Basic control loop
Observe the system being controlled
Compare current behavior with expected
If different, make adjustments

Input Output

Georgia I
Tech |

Control Components

External
Distutbance

.
i

Performance
Monitor

Georgia I
Tech |



Phase Locked Loop

e Simple example: FM Radio
Frequency modulation over a channel
Channel is a range of spectrum: 90.1MHz
Broadcast frequency moves over range

e Simple loop: PLL

Knows about the range, frequency move

Moves along with the broadcast

Georgia I
Tech |

Predictability of Control

® Control system properties
Stability: does the steady state converge?
Maximum error: how far from target?

Responsiveness: how fast does it react?

Georgia |
Tech ||




PID Control

® Proportional-Integral-Derivative

® Linear combination of 3 components
Proportional: C,
Integral: C;
Derivative: Cj,

® Luetal [RTSS’99]

dError (1)
dt

Control (1) = C,Error (1)+ C, IErmr (t)dt + C,

Georgia |
Tech )

Advantages of PID

® Systematic design method
Given predictable input parameters

Design control components by composition of
filters ( )

® Predictable performance

Responsiveness, maximum error, stability

: need to sample at twice the
frequency of phenomenon

Georgia I
Tech ||




PID Design Tradeoffs

e Example: minimize response time
React immediately to input change
Leads to instability during spikes

® Integral filter adds stability

Average the input signals over a window
(smooth out the spikes)

Reduces instability, delays response

Georgia I
Tech )

FC-EDF

® Goal of the scheduler
Maximize utilization & minimize MissRatio
EDF maximizes utilization anyway

Feedback controls maximum allowed
utilization level to minimize MissRatio

e Control knobs (figure 2, p. 59)
Admission control: rejection of tasks

Service level: multiple versions of tasks

Georgia I
Tech ||




MJSSRatIo anEw II.!II!%II!‘I.'II.I"'II- EEIEE NEEWR

1
FESAAFREEEAEE

i
:IIIIU-IIH'I

Service Level
Controller

Ge?l' Figure 2 Architecture of FC-EDF

PID Controller

® Observes the MissRatio of system
Calculates missed deadlines in a window

Sampling rate: every SP seconds

® Control signal (ACPU) on utilization

Calls Service Level for “quick” reaction (small
adjustment of accepted tasks)

Admission Control called if needed (slower
impact on utilization

Georgia I
Tech |




Service Level Adjustment

® Task service levels

Logical versions of tasks that require more or
less CPU

Concrete example: imprecise computations
® Adjustments that change utilization
Higher service level uses more CPU

Typical scenario: starts at high level and gets
reduced during overload

Georgia I
Tech )

Admission Control

® Stops tasks from entering queue
Does not change accepted task queue
Reduces CPU utilization slowly

® Can only reduce task queue length
Service level is bi-directional control

® Potential trade-off with service level

Admit tasks at low level service

Georgia I
Tech ||




Discussion

® Disadvantages
Coarse-grained adaptation (seconds)
Detects missed deadlines and then react
Applicable to stable workloads

e Advantages

Close enough to classic feedback model for'a
classic analysis (section 3.6)

Georgia I
Tech |

Stability Analysis

e BIBO stability
Bounded Input — Bounded Output

® Assumptions
Utilization tracking is good (bounded error)

Tasks are independent
e .. 1. C=0, |1CDI<1,2CP—C.+4CD<4, and
® Stability condition PRSI N N AR EY
2. C=0,ICpl< 1,and 0 < Cp+2C, <2

dik}

R . . - puce . dicsRatiof
Mlszﬂno? C,+'C—‘I+£M PU L) LI CPUTY, gk} ) mrg(k) >




Other System Parameters

® Maximum error
How far can the utilization tracking drift?
® Responsiveness

How quickly will the controller respond to
input changes?

® Tradeoffs between parameters

Georgia I
Tech )

Performance Evaluation

e Simulation-based (figures on p. 63)
MRA: miss ratio among admitted tasks
UTIL: actual CPU utilization

HRS: hit ratio among submitted tasks
(successful execution ratio)

VCR: value completion ratio (higher service
level contributes higher value)

etf: estimated time factor

Georgia I
Tech ||




0t~ . 06+ o
- o 3 —e— EDF+AC
& . = EDF+P
s K 5 ° —+— FC-EDF
0.4 s 0.4+ -4 EDF
£
0.2 0.2
4
0.0 A—g— A" : = 0.0 +— - ;
0ns K] 15 0.8 Lo ]
etf ell
Figure 5§ MRA vs. etf Figure 6 UTIL vs. etf
1 -
-n—q:._.‘\ 1.0 \
3 s
PN 3,
0.8 - \ LER N
5 Y
a . .
RN N
0.6 Y ‘\,_‘ o 0.6 AN " —e— EDF+AC
s —— N EDF+P
E LI o g 500 0 H‘.\:, - FC-EDF
0.4 7 0.4 AT +  EDF
-
0.2 0.2
00—y : : 00 4~ -
05 L 15 0.5 10 L5
Geo ar af y

Figure 7 HRS vs. etf Figure 8 VCR vs. etf

Scheduler Adaptation

e FC-EDF (figure 9, p. 65)
Watch the adaptation of FC-EDF
etf spike (300 SP) causes misses

etf loss (600 SP) causes low utilization

k] L
= 02 [ : ‘ .
y - i Bt oW og u i i
0.0k 4,&;& _l_?a,_ B i id lE L
0 500 1000
Time (2400 unit)

Figure 9 Sampling MissRatio and CPU Utilization of FC-EDF

CPU Utilization




Scheduler Adaptation

e EDF and EDF-AC
EDF (figure 11): high miss ratio
EDF-AC (figure 10): improves on EDE

" ——— CPU Utilization
- MissRatio

MRA and UTIL

e S \ U

o 500 1000
Time (2400 unit)

Figure 10 Sampling MissRatio and CPU Utilization of EDF+AC

Scheduler Adaptation

e EDF and EDF-AC
EDF (figure 11): high miss ratio
EDF-AC (figure 10): improves on EDF

E 0.8 -
3 %57 . SR CPU Utilization
& MissRatio
=
0.0 T & T
0 500 1000

Time (2400 unit)
Figure 11 Sampling MissRatio and CPU Utilization of EDF




Discussion

e EDF, EDF-AC
Earliest Deadline First (naive)
EDF with admission control
e FC-EDF
Feedback control of service level & AC
Stability analysis

Performance evaluation

® Problem: miss ratio not really suitable

Georgia I
Tech )

Feedback-Based Scheduling

® Problems with using miss ratio as feedback
metric

® Feedback should be fine-grained

® How do we use feedback directly in
scheduling?

® How do we “automate” the feedback?
® Steere et al [OSDI’99]

Georgia I
Tech ||




Motivation

Server

® Real-rate applications

Real-world performance demands

e Automated rate matching
fine-grain adjustment of allocation
dynamic response to variable rates

low programming complexity

Georgia I
Tech )

Priority Schedulers

® Give CPU to highest priority task
® Scheduling policy

Assigns priorities to tasks
® Scheduling mechanism

Sort runnable task queue according to priorities

Run the task at the head of the queue
e Example of problems

Priority inversion

Georgia I
Tech ||




Proportional Scheduler

® Give tasks a proportional share of CPU
® Scheduling policy
Assign proportions to tasks
® Scheduling mechanism
Round-robin queue
Time slice allocated according to the proportion

e Example of problems

Need to cycle through queue fast

Georgia I
Tech )

Current Schedulers

® Priority-based schedulers

all-or-nothing or equal share:
e unless aided by the application programmer:

® Proportional-share schedulers
require program to specify resource needs:

hard to know for variable rate apps

Georgia I
Tech ||




Feedback Approach

Application-specific Allocation based on

information

Progress Dynamic Scheduling
. | Monitor Allocator Mechanism

Feedback Scheduler

Georgia I
Tech )

Simple Idea

® Real-rate task model
Known CPU requirements
Known deadline
® Dynamic scheduler
Monitors task progress towards deadline
Insufficient CPU: increase allocation

Do it fast enough before miss

Georgia I
Tech ||




Our Approach

Symbiotic

Interfaces [ R — | [/
Progress
Monitor

Assign Resources

Adjust
Reservations g
Allocator Scheduler/Dispatcher

® Application progress monitor
® Resource reservation scheduler

® Dynamic allocator:
Feedback based allocator samples progress
Calculates resource needs, assigns allocation

Georgia I
Tech |

Progress Estimation

® Automated monitoring feasible
Symbiotic interfaces between system and
application

® Concrete examples
Server: consumer of a bounded buffer

Data rate of shared memory queues, sockets,
pipes, etc

I/O intensive: consumers of the I/O subsystem
Interactive: listen to tty instead of sockets

Georgia I
Tech |




Queue Example

Assign Allocation to

Feedback Scheduler —

Georgia I
Tech )

Progress Monitor

TG T

Pressure =

e Fill levels show data flow pressure
High pressure: increase CPU allocation/priority
Low pressure: decrease allocation/priority

Goal: keep data flowing smoothly

Georgia I
Tech ||




Dynamic Allocator

e Real-rate: pressure fed
to PID controller

® Real-time: progress
towards reservation fed
to PID controller

e Other: constant positive Allocation = PID(Pressure)
pressure (bypass
adaptation)

Pressure

Georgia I
Tech )

Overload Allocation Policy

® Real-time:

renegotiate reservations, admission control

® Others:
weighted fair sharing, proportional squishing
Transient load: jobs regain allocation

Long-term load: quality exceptions to
applications

e Applications can shed load

e Increase job importance

Georgia I
Tech ||




Scheduling Mechanism

® Reservation scheduler
based on proportion and period
uses rate-monotonic scheduling
allocations enforced during process dispatch
allows fine granularity allocation adjustment
low overhead for changing reservations

respects reservations for applications that
specify them

Georgia I
Tech |

Allocator's Response

Producer |:| Consumer
m Fixed Allocation
allocation Response?
® Response to Varying progress
® Vary the progress rate of the producer
fixed allocation, variable production rate
® Measure the progress rate of the consumer

variable allocation, fixed consumption rate

® Progress rate = allocation X

g duction/consumption rate)
Georgia |
Tech ||




Results on Idle System

e Allocator response

adjusts consumer’s
allocation rapidly

(bytes

matches producer’s
progress rate

Rate of progress
ytes/sec)
g
1

=
3
1

£
I

Queue fill level

= F
= i

SJ\A 4
| WHMVM‘M

T
20

time in seconds

Georgia I
Tech )

Results on Loaded System

® The “other” load does
not have a progress
metric

® “Other” load loses
allocation to the real-
rate consumer job

Production rat
{Mocksisee)

= E =
kB

time in seconds

Georgia I
Tech ||




Allocator Overhead

hi 5
03 =
0.02 -

[

Alloeator Overhead

0,00 —
(1} 5 10 15 0 25 30

Numbher of Controlled Processes

® Linear with number of threads under our control

e Small slope of prototype - 0.06% per process

Georgia I
Tech )

Benefits of Our Approach

® Finer grained allocation

® Avoids starvation and priority inversion
® Easy admission control

® Automatic estimation of reservations

® Implementation in Linux
source code available at
http.:.//www.cse.ogi.edu/DISC/projects/quasar/rele
ases

Georgia I
Tech ||




Related Work

® Real-time priorities
® Proportional allocation [Waldspurger]

® Reservation Schedulers [Nieh, Jones]

Previous work focuses on satisfying
requirements, rather than inferring requirements
accurately
® Balancing between real-time and normal
jobs

® Pipeline based allocation [Jeffay]

Georgia I
Tech )

Adaptive Controller

e Rcal-time: controller typically doesn’t touch
specification

e Aperiodic Real-time: controller assigns default period

e Rcal-Rate: controller uses progress metric to estimate
pressure

® Miscellaneous: heuristic, constant pressure

Georgia I
Tech ||




Summary

® Unified scheduling mechanism
real-rate, traditional and real-time jobs

expose application-level progress

® Move scheduling to a higher level of
abstraction

think progress rather than allocation
® Dual strategy
proportional share scheduler: gear box

dynamic allocator: automatic transmission

Georgia I
Tech |

Discussion

® Network bandwidth scheduling: Allocate
network bandwidth among competing tasks

® Problems with traditional queue schedulers
(e.g., FIFO)

® Problems with adapting traditional CPU
schedulers for networking (e.g., priority)

e Li ct al [MMCN’01]

Georgia I
Tech |




FB-Based CPU Scheduling

o o
Server

® Real-rate applications
Real-world performance demands
e Automated rate matching
fine-grain adjustment of allocation
dynamic response to variable rates

low programming complexity

Georgia I
Tech )

Queue Example

Assign Allocation to

)

Feedback Scheduler —

Georgia I
Tech ||



Progress Monitor

TG0

Pressure = I'a -

e Fill levels show data flow pressure
High pressure: increase CPU allocation/priority
Low pressure: decrease allocation/priority

Goal: keep data flowing smoothly

Georgia I
Tech )

Real-Rate Applications

e Real-Rate applications
IP telephony
Videoconferencing
Remote sensors over network

e Common aspects:

Delay-sensitive

o data must be delivered from sender to receiver in bounded
time.

Self-rate-regulated
e c.g. live video source from camera
e break our infinite source assumption

Georgia I
Tech ||




Real-Rate Applications in the Internet

Sender-Side

Buffer

“ongestion Control

Feedback

® A real-rate application using a congestion control protocol.

Georgia I
Tech |

Real-Rate Application

Input Output
Rate Rate
Buffer ‘

e Buffering delay between real-rate application &
congestion control protocol:

It is caused by rate mismatches,
e Input rate is controlled by the application adaptation.
o Output rate is controlled by the congestion control.

e TCP-friendly congestion control

Georgia I
Tech |




TCP with Finite Source Rate

Infinite source

Input buffer
empty now

e Infinite sources = Finite sources

TCP expands its window at = TCP is in “full speed” when
“full speed”. input buffer has data.

" when input
buffer is empty.
Average TCP ¢

L= —
LB RTT* = Can’t model TCP independently!
Georgia | 81

Tech )

If Input Rate is Higher Than Output

® Assumptions:
CBR input
AIMD saw-tooth output

Input rate is higher than the
average of the output Rate.

e Result:
Buffering delay builds up

e Solution:

Georgia I
Tech ||



QoS Adaptation Based on Local
Buffer

Buffering Delay Feedback
Input Output
Rate Rate
Buffer ‘
e Adaptation: Reducing input

a— rate to be less than the
i average of output.

e System goes to the finite
source case!

Georgia I
Tech |

Packet Scheduler

Manages outgoing network interface bandwidth
Buffers & multiplexes different streams
Determines and overall

for each stream

Conventional End-Host OS uses FCFS policy

Georgia I
Tech |




FCFS Packet Scheduling
Problems

e Unpredictable delays

Many FTP packets may be inserted between
consecutive video packets

Georgia I
Tech )

FCFS Packet Scheduling
Problems

"5\

Il

Competition for bandwidth
Best-effort streams are greedy
Real-rate streams are self-controlled
Real-rate packets are dropped regardless of available
bandwidth

Georgia I
Tech ||




Bandwidth Reservation
Mechanism

® Each stream is guaranteed a bandwidth
over some

Georgia I
Tech |

Specifying Reservations

e Informed
Too complex for programmers or users to specify
Bandwidth requirements are not constant
e Inferred
Current schedulers use only resource-level information
e Our Solution

Packet scheduler dynamically infers application
requirements from protocol state

Georgia I
Tech |




Inferring Requirements

Sender-Host . Receiver-Host

Receiver Process

® Monitor sender and receiver socket buffer fill-levels
® Receiver’s socket buffer is on a remote host!
e Data rate requirements change dynamically

Georgia I
Tech )

Packet Scheduler
Architecture

Proportion and Period Controller

Seckel & ot
Laver Vrotocols Reservation-Based
Streant nn Packet Dispatcher
Stream-n lll

e Packet dispatcher - reservation-based mechanism
® Proportion and period controller - progress-driven
policy

Georgia I
Tech ||




RAMP in Kernel

The RAMP Scheduler (in kernel part)

Socket Buffer Per-flow Queue

Packet
TCr Dispatcher Interface

Queue

Device
= - + Interrupt
Tcp :I:l:l:l_. Hu:)dl'c]l'

Figure 3: The Packet Dispatcher in an End-host’s OS

Georgia I
Tech )

System Overhead

Maximum Interface Throughput

TCP Stream UDP
Maximum Unidirectional

Throughput Stream Maximum

Linux 2.0.35

Linux with our
Packet Scheduler

Georgia I
Tech ||




System Responsiveness

® Rise time (tr) - how fast the controller response
e Overshoot (mp) - how much oscillation the output has

e Settling time (ts) - when the result will reach stable

Georgia I

RAMP Response

Step-Input Response

T
A0CAHON m—

T
bandwidth requirements

target(+i-)5%
£

¥1: Bandwidth (KbiSec)

Response
Time

1
1 15
Time (Second)

Figure 6: RAMP scheduler’s step-input response

Georgia |
Tech ||




System Responsiveness Results

Step-Input Response Buffer Fill-Levels Variations

Rate (Kbytes/Sec)
Buffer Fill-Level (Percentage)

Time (10ms) Time (10ms)

*Rise time 100ms, Overshoot 25% and Settling Time 470ms .

*Controller’s setting: PID parameters (4.0, 0.4, 1.0) and Sampling time (10ms) .

Georgia |

Tech

Competition for Bandwidth

Bandwidth Allocations Bandwidth Allocations
(Estimated by the Receive Data Rate)

Rate (Kbytes/Sec)
Rate (Kbytes/Sec)

Time (10ms) Time (10ms)

Real-Rate Stream’s Real-Rate Stream’s Best-effort Stream’s
Bandwidth Requirement Bandwidth Allocation Bandwidth Allocation

Georgia |
Tech




Allocation versus Usage

— Best-Effort Stream — Best-Effort Stream

— Real-Rate Stream (800kBytes/Sec) . — Real-Rate Stream (SOOKBth o/Se c)
900

900

- 80
700

600 600
500 500
400 400
300 300
20 200
100

0l J : : ‘ ‘ 04 : : ; . .

150 101 151 200 250 301 350 401 451 501 151 100 151 201 251 301 351 401 451 501

Georgia I

RAMP Allocation

Dynamical bandwidth allocation
10000 T T T T
allocation (using Y1) ——
bandwidth requirements (using Y1) ===== - 140000
per-flow buffer fill-level (using ¥2) ——
target buffer fill-level (using Y2) == ===
8000 | - 120000
7 - 100000 §
@ &
6000 | =
£ z
£ - 8o000 &
o =
= =
= | &
& 4000 [ 1 fem Ah N 60000 2
= I
> I o
! 40000
2000 |
20000
0 1 1 1 1 0
0 5 10 15 20
Time (Second)
Figure 5: RAMP scheduler’s allocations versus
the benchmark application’s requirements variations
= 1
Georgia I




FCFS Scheduler (TCP

TCP’s behavior with lightly buffered bottleneck without RAMP scheduler

T allocation by FCP'S (using Y1) ——
ottleneck rate(using Y1)
TCP cangestion window (using Y2)

avg_rate 1.04Mbls
max_win 10(pkis)
1.B{saw-tocth/s)

avg_rate 1.10Mbls avg_rate 0.36Mbfs avg rate 1 68Mbis |
rmae_win 10{pkis) max_win 10{pkis) max_win 10{pkts)
1 ) 94{saw-tooth/s) 2 26(saw-tooth/s)

¥1.Bandwidih (KbiSex)
Window size (pkis)

40
Time (Second)

Figure 7: TCP’s behavior with a FCFS scheduler

RAMP Scheduler (TCP

Autornatic bandwidth allocation with light buffered bottleneck in the network

' ! allocation (Using Y1) ——
bottleneck rate (using ¥ 1) —
TCP congestion window (using Y2)

avg-rate 1.01Mb/s
max_win 25(pkts)
0.7(saw-toothis)

avg-rate 1.08Mb/s avg-rate 0.30Mb's avg-rate 1. 76Mb/s
max_win 25(pkis) max_win 20(pkts) max_win 30(pkts)
0 B(saw-tooth/s) 0.4(saw-tooth/s) 0 .8(saw-tooth/s)

Y2 Window size (pits)

¥1: Bandwidth (Kb/Sec)

40
Time (Second)

Figure 8: TCP’s behavior with a RAMP scheduler




Summary

® Feedback control can be used for several
system resources:
CPU scheduling (proportional share)
Network bandwidth scheduling (rate matching)

Georgia I
Tech |

Discussion

® Application of rate monotonic to network
bandwidth scheduling

Georgia I
Tech ||




OSI| Reference Model

Application

o
=
©
£
(@]
(%)

Georgia I
Tech )

Transmission Time

Sender Receiver

Georgia I
Tech ||




Message Classification

® Synchronous messages
Periodic, predictable stream (sensor data)
Arrival time: job creation
Length: job resource requirement
Deadline: job completion requirement

® Asynchronous messages

Aperiodic task communications, alerts

Unpredictable arrivals, length, deadline

Georgia I
Tech |

Access Arbitration

® Network as a shared resource

Rate monotonic scheduling of bandwidth

® Desirable properties
Bandwidth utilization (for synchronous)
Robustness: not brittle
Timing fault isolation and limitation
Accommodate asynchronous messages

Low run-time overhead

Georgia I
Tech |




Rate Monotonic Scheduler

® Classic hard real-time CPU scheduler
® Decides who gets the resource next

CPU in the original work
Network bandwidth in MAC

e Static scheduler: fixed priorities
No dynamic priority adjustments

Not a static schedule

Georgia I
Tech |

RM Scheduling Algorithm

® Assumptions
Jobs are periodic, marked by start and end

Jobs are independent

® Shorter period jobs get higher priority

Time line

Georgia I
Tech |




RM for Networking

® Synchronous messages
Arrival, length, deadline

Time line

Georgia I
Tech )

Preemption in Networks

e Simulate preemption

Divide message into packets (unit of
scheduling)

B
L ]

Georgia I
Tech ||

Time line




Discussion of RM

e Evaluation criteria

Bandwidth utilization: guaranteed theoretical
limit of 0.693 for CPU

Robustness: OK if below the 0.693 limit
Timing fault: limited by preemption

Asynchronous messages: high priority until the
0.693 limit

Run-time overhead: may be high (fig. 4)

Georgia I
Tech )

Priority-Driven Protocol

0.8 =
=2 100 nodes
=
2 04 100 meters between nodes
S - Bit delay per node = 4 bits
= Packet length = 512 bytes
B Average period = 100 ms
= 5 T
= 04 - Signal propagation speed
. (.75 * (speed of light)
i
=

0 7

0.0 4 T

T 1
1.0 10.0 100.0 10:00.0

(| Bandwidth (Mbits/s)




Transmission Control

e Timed token protocol
Nodes are arranged in a ring
Each node receives the token in sequence
Node k transmits H, packets (predefined)

Token rotation time bounded (half of minimum
deadline)

If token arrives early, send asynchronous
messages

Georgia I
Tech )

Scheduling Analog

® Timed token protocol
Nodes are arranged in a ring (round robin)
Each node receives the token in sequence
Node k transmits H, packets (time slice)

Token rotation time bounded (to guarantee the
equivalent of preemption)

If token arrives early, send asynchronous
messages (different priorities)

Georgia I
Tech ||




Discussion of Timed Token

e Evaluation criteria
Bandwidth utilization: 0.33 WCAU

Robustness: OK if below the 0.33 limit
(Shortest Path), and 0.45 (heuristic)

Timing fault: limited by H, (time slice)
Asynchronous messages: squeezed in

Low run-time overhead: good scalability (fig,
)

Georgia I
Tech )

Timed Token Protocol

100 stations
100 meters between stations
Packet length =512 bytes
Average period = 100 ms
Bit delay per station = 75 bits
Signal propagation speed

0.75 * (speed of light)

0.6 -

04 =

Avg. Breakdown Utilization

T T
1.0 10.0 1000 10000

Bandwidth ( Mbits/s)




Asynchronous Messages

e Unpredictable arrivals
® Guarantees in dynamic scheduling

Periodic server: reserved bandwidth (affects
synchronous messages)

Conservative estimation: worst case analysis
of all messages (under-utilization)

Dynamic reservations: control message to
reserve future bandwidth (overhead)

Georgia I
Tech )

“‘Best Effort” Scheduling

® Minimum laxity first (MLF)

Laxity = time to latest feasible start time (when
the job can still complete)

Run the job closest to failing first

Optimal in minimizing deadline failures
Earliest-Deadline First (EDF) also optimal
MLF = EDF when jobs have same length

“deadline-driven scheduling”

Georgia I
Tech ||




MLF in Networking

® MLF in bandwidth scheduling
Send first the messages w/ minimum laxity
® Some drawbacks when priority-based
Overhead in priority arbitration
MLF requires dynamic re-prioritization

Priority inversion due to insufficient number of
priority levels

Georgia I
Tech )

Summary of Survey

® Message (job) classification
Synchronous messages (periodic jobs)
Asynchronous messages (aperiodic jobs)
® Scheduling strategies

Access arbitration: who gets to use the resource
(network bandwidth or CPU)

Transmission control: how long one gets to use
the resource (bandwidth)

Georgia I
Tech ||




Scheduling Algorithms

® Rate monotonic for periodic jobs
Shorter period gets higher priority
Tight worst case achievable utilization

® Minimum laxity first for aperiodic jobs
Closer to failure gets higher priority
Optimal in minimization of failures
Related to EDF

Georgia I
Tech )

Analytical Graph

0030

W

0.025 1+

L0200
Token passing
is best
0.015 4 P"il‘!'i.l." l|."i\k‘” Most current
is best real-time token
ring networks are
within this range

0010 4=
........................................ / e
' .
' .
0.005 ==} E
. Window is best
0.000 4o =.- .....= ....... =. ....... blells I- g =
8 16 32 6 128 256 512 1024

- 122




Classification

® Scheduling algorithms fail at overload
® Prevent overload

Static schedules
Admission control

® Overload management
Congestion control

Adaptive (QoS-driven) resource management

Georgia I
Tech |

Admission Control

® Asynchronous messages
Guaranteed dynamically

Conservative estimation: worst-case analysis of
all messages in a node

Main problem: under-utilization

® How to sharpen the estimation and increase
network utilization

Georgia I
Tech |




Assumptions

® Network model
Diffserv architecture (with classes)

® Resource management components
Configuration: class & route determination

Run-time admission control: enforce
admission policies when under overload
Packet forwarding: class-based static priority
policy, FIFO within class

Georgia I
Tech )

Utilization-Based

e Utilization-based admission control
Run-time decisions on flow establishment
Current utilization the only criterion

e Bandwidth availability along flow path
Safe levels of utilization

Determined during configuration

Georgia I
Tech ||




Conservative Estimation

® Configuration-time delay computation
Traffic constraint bounds usage per link
Server delay bound
[terate the delay calculation on all servers
® Safe route selection
Satisfy deadlines of each class and route

Heuristics: min distance, min delay

Georgia I
Tech |

Maximize Utilization

® Max utilization bounds depend on network
diameter (theorem 4)
Given a utilization level, find safe routes
Converge on max utilization that has safe
routes
® Their result (45%) is better than Shortest
Path (33%)

Georgia I
Tech |




Discussion

® What are the principles that guarantee
RTES will work as designed?

Georgia I
Tech )



