
1

1

Summer Institute on Summer Institute on
Software ArchitectureSoftware Architecture

Embedded Systems Embedded Systems ArchitectureArchitecture
1: Modern Embedded Systems1: Modern Embedded Systems

Instructor: Calton Pu
calton.pu@cc.gatech.edu

© 2001, 2004, 2007 Calton Pu and Georgia Institute of Technology

2

Overall Structure (Day 1)Overall Structure (Day 1)
Introduction to modern embedded systems
– Ubiquitous computing as a vision for integrating future

embedded systems
– From embedded to resource constrained systems
– Some basic techniques for constructing real-time

embedded system software

Principled embedded software infrastructure
– Survey of real-time scheduling algorithms: static,

dynamic priority, static priority dynamic
– I/O processing and networking for embedded systems

2

3

Overall Structure (Day 2)Overall Structure (Day 2)

Automotive embedded software architecture
– Component-based software engineering
– Case study on automotive embedded software

Sampling of methodical optimization of
embedded software
– Specialization of system software
– Code generation and translation
– Aspect-oriented programming

4

Part 1: Day 1 morningPart 1: Day 1 morning

Introduction
– Ubiquitous computing as a vision for

integrating future embedded systems
– From embedded to resource constrained (real-

time embedded) systems
– Survey of principled RTES construction

techniques

3

5

Embedded and UbiquitousEmbedded and Ubiquitous

Ubiquitous Computing as vision
– Proposed by Mark Weiser [CACM 1993]
– At the time, a new form of computer science
– Hardware Issues

Applications
Where are we now?

6

UbiCompUbiComp in 1993in 1993
Very new to the field of CS
– Xerox PARC has been working on Ubiquitous

Computing since early 90’s
Main goal was (and still is) to get the
computers “out of the way of everyday
activities”
Technology finally caught up to the
proposed ideas for “environmental
computing”

4

7

UbiCompUbiComp in 1993 (Cont.)in 1993 (Cont.)
Some thought Virtual Reality was the ideal
UbiComp solution, but the technology was
not advanced enough
Ruled out GUIs as the complete solution
Identified several key needs of a successful
UbiComp device
Still struggling with some of the same
problems today

8

Phases of DevelopmentPhases of Development

Researchers at Xerox PARC identified the
initial set of ubiquitous computing “phases”
– Construct
– Deploy
– Evaluate

Realized that Phase One would not achieve
the “optimal invisibility”

5

9

Potential PlatformsPotential Platforms

Devices of various sizes
Enough diversity to give some sense of
scope
Must be found in everyday life and used
frequently
Above all, they must be unobtrusive

10

LargeLarge--Size PrototypeSize Prototype

LiveBoard! (Look to the right!)
Main idea was to simulate an office
whiteboard
Order of 1 per office

6

11

MediumMedium--Size PrototypeSize Prototype

XPad
Main goal was to simulate a personal
notebook
Order of 10+ per person

12

SmallSmall--Size PrototypeSize Prototype

ParcTab
Main goal was to simulate PostIts
Order of 100+ per person

7

13

New Form of CSNew Form of CS

Valuable lessons learned from the early
prototypes
Development of a new hierarchical abstraction
specific to UbiComp framework
Main goal of this paper is to discuss the
motivations behind this new form of CS and
the current obstacles

14

New Hierarchical AbstractionNew Hierarchical Abstraction

Hardware

Network Protocols

Interaction Substrates

Applications

8

15

Hardware RequirementsHardware Requirements
Low Power
– Speed can be sacrificed

Wireless
– One low-speed (64kbps) per person
– Remember this is 1993

Pens
– Wireless (IR beams)
– Available without touching the screen and up to

several feet away

16

Network ProtocolsNetwork Protocols
IP was not the proper protocol because it
assumed a static location of the computer
A “media access” protocol is required
Some applications require guaranteed
bandwidth (voice and video)
Example – MACA [Karn 90]
– Uses a handshake algorithm that verifies

communication channel and lets others know of
upcoming transmission

9

17

Network Protocols (Cont.)Network Protocols (Cont.)
Real-Time Protocols
– Focus on packet-switched networks
– Attempt to eliminate bottlenecks at basestations
– Work in progress at the time (no concrete

details are provided)
“Secondary” or “Virtual” IP
– Adds a level of indirection to account for user

mobility

18

Interaction SubstratesInteraction Substrates

IR Pens
“No look” touch screens
Palm size keyboard
– Found to be only half as fast

Window migration tools
“Low Bandwidth X” [Fulton 93]

10

19

Early ApplicationsEarly Applications

Active Badge
– An employee tracker
– AT&T Labs in Cambridge

Slate
– Shared media tool
– Xerox PARC

Both widely used even outside of the labs

20

New Theoretical ProblemsNew Theoretical Problems

UbiComp has unveiled several new
theoretical problems that need to be solved.
For example:
– Optimal Cache Sharing Problem

Optimal strategy for partitioning memory between
compressed and uncompressed pages
Led to the development of the Lower Bound
Theorem for Caches [Bern 93]

11

21

Where Are We Now?Where Are We Now?

Still developing new technologies
Have met the demands for:
– Wireless Networking (IEEE 802.11)
– Low Power CPUs (300+ MHz at 1.1v)
– Real-Time Packet Switching (Numerous

algorithms)
– Applications (Entire OSs have been built)

22

GeorgiaGeorgia--Navigator.comNavigator.com

12

23

RealReal--Time Air TrafficTime Air Traffic
www.flightexplorer.com

24

Remote Experiment ControlRemote Experiment Control

13

25

Environmental ForecastingEnvironmental Forecasting
Columbia
River
monitoring
and
forecasting

26

Financial ApplicationFinancial Application

Analyze data in
real-time
Respond to market
developments as
they occur
Strong visualization
(Screenshot from
TrendSoft
ProAnalyst)

http://http://www.trendsoft.com/ProAnalyst/main.htmwww.trendsoft.com/ProAnalyst/main.htm

14

27

Online GamingOnline Gaming

Halo2, multi-
player

http://www.xbox.com/en-us/halo2/default.htm

28

Online EntertainmentOnline Entertainment

Radio, TV,
Video
Virtual reality

15

29

RealReal--Time TrackingTime Tracking
Car, goods
People
etc

30

DARPA Grand ChallengeDARPA Grand Challenge

16

31

Evolution of embedded systems from
isolated devices to participants in a
ubiquitious computing world
Role of embedded devices in:
– Computer and communications (e.g.,

convergence of functionality into hand set)
– Consumer electronics and appliances (e.g.,

smart refrigerator and house)
– Transportation (e.g., cars)

DiscussionDiscussion

32

RTES Need RTES Need ArchitectureArchitecture
Traditional embedded systems
– Isolated, self-contained hardware systems
– Small, specialized software (e.g., GUI)
– Insufficient correctness guarantees ($800M

software verification costs for Boeing 777)
Recent and future embedded systems
– Small form factor, but big capability and

capacity (e.g., iPod, cellphones, navig. systems)
– Short shelf life forces rapid development and

expectations of high reliability, security, etc

17

33

Need Principled Embedded Need Principled Embedded
SoftwareSoftware

Embedded systems becoming complex
– Convergence of functionality (e.g., evolution of

cell phones – PDAs, iPods, …)
– More than GUI: search thousands of songs

Integration into Internet
– VoIP infrastructure integrating data & services
– Sensor information from the real world

High confidence systems and components
– Performance, availability, reliability, security,

privacy, trust, scalability, composability, etc

34

Unifying Concept: Unifying Concept:
Constrained ResourcesConstrained Resources

Embedded systems
– Constrained CPU, memory, storage,

networking bandwidth, battery power, screen
real estate, everything

Real-time systems
– Guaranteed schedulers under constrained CPU
– Guaranteed message delivery under constrained

network bandwidth
Embedded systems and real-time systems
have same principles and goals

18

35

Pathfinder Mars RoverPathfinder Mars Rover
Landing: July 4, 1997; initial successes
Intermittent software system resets
– Delay of mission, serious loss of data
– Happens when “too much” data are sent over a

shared information bus
– Low priority data collection task locks the bus,

gets interrupted by medium priority tasks
– High priority data distribution task fails to

complete: cannot get shared bus
– Scheduler detects pending high priority task

and resets all the hardware and software

36

RTES TechniquesRTES Techniques

Problem modeling and abstraction
– Priority inversion: high priority task delayed in

a critical section by low priority tasks
Solutions proposed
– Priority inheritance: low priority tasks entering

critical section will inherit the highest priority
of waiting tasks

Solved the Pathfinder reset problem

19

37

Feedback in a CarFeedback in a Car
Operating environment: Road conditions
and other cars.
Controlling System
– Human driver: Sensors - Eyes and Ears of the

driver.
– Computer: Sensors - Cameras, Infrared

receiver, and Laser telemeter.
Controls: Accelerator, Steering wheel,
Break-pedal.
Actuators: Wheels, Engines, and Brakes.

38

Example: cruise controlExample: cruise control

Regulates speed of car by adjusting the
throttle: driver sets a speed and car
maintains it.
Measures speed through device connected
to drive shaft.
Hard real-time: drive shaft revolution
events.
Soft real-time: driver inputs, throttle
adjustments.

20

39

Simple Valve ControlSimple Valve Control

flow
meter

valve

interface

input flow
reading

processing

output valve
angle

40

Process ControlProcess Control

process control
computer

stirrervalve temperature
transducer

operators console

chemicals
and

materials

finished
products

21

41

ManufacturingManufacturing

production control
computer

conveyor
belts

machine
tools manipulators

operators console

parts finished
products

a production control system

42

Command, Control, CommunicationsCommand, Control, Communications

a command and control system

command and
control computer

temperature, pressure, power and so onterminals sensors/actuators

command
post

22

43

Industrial Embedded SystemIndustrial Embedded System

operator’s
console

operator
interface

data retrieval
and display

data
logging

algorithms for
digital control interface

remote
monitoring

display
devices

engineering
system

real time
clock

database

44

Feedback Control SystemFeedback Control System

r(t)
controller
(analog)

∑ plant
e(t) u(t) y(t)

23

45

Digital Feedback ControlDigital Feedback Control

r(t*) digital to
analog

converter
plantu(t*) u(t)

y(t)

controller
(computer)

sample
and
hold

y(t*)

46

More Examples of RTESMore Examples of RTES

Cars: engine control, ABS, drive-by-wire
Planes: stability, jet engine, fly-by-wire
Computers: peripherals, applications
Military: weapons, satellites
Small appliances: microwave, thermostat,
dishwasher
Medical: pacemaker, medical monitoring
Security: intruder alarm, smoke/gas
detection

24

47

RTES TerminologyRTES Terminology
System: black box with n inputs and m
outputs
Response time: time between presentation
of a set of inputs and the appearance of the
corresponding outputs
Utilization: measure of ‘useful’ work a
system performs
Events: Change of state causing a change of
flow-of-control of a computer program

48

Classification of RTES SystemsClassification of RTES Systems

synchronous: events occur at predictable
times in the flow-of-control.
asynchronous: interrupts.
state-based vs. event-based:
– plane wing is at an angle of 32º (state)
– plane wing moved up 4º (event)

deterministic system: for each possible state
and each set of inputs, a unique set of
outputs and next state of the system can be
determined.

25

49

More RTES TerminologyMore RTES Terminology

RTS: Correctness depends on results PLUS
the time of delivery! Failure can have
severe consequences.
What are real-time systems? Planes, cars,
washer, video player, thermostat, video
games, weapons,...
Related: QoS management, resource
management, adaptive systems, embedded
systems, pervasive and ubiquitous
computing, ...

50

RTES Systems Classification (2)RTES Systems Classification (2)

HARD: miss a deadline and you’re in trouble! (planes,
trains, factory control, nuclear facilities, ...)
SOFT: try to meet deadlines, but if not, system still works,
although with degraded performance (multimedia,
thermostat, ...)
FIRM: late results are worthless, but you are not in trouble

26

51

Characteristics of RTES SystemsCharacteristics of RTES Systems

size: small assembler code or large C++,
Ada, ... code (example: 20 million lines of
Ada for Intl. Space Station).
concurrent control of separate components
(model this parallelism with parallelism in
your program).
use of special purpose hardware and tools to
program devices for this hardware in a
reliable manner.

52

Common MisconceptionsCommon Misconceptions

“real fast” is real-time: a computer system
may satisfy an application’s requirement,
but no predictability (no real-time resource
management).
hardware over-capacity is enough: again,
without real-time resource management no
appropriate balance of resource distribution.

27

53

Static PredictabilityStatic Predictability

RTES: satisfying the time constraints
– Certain assumptions about workload and

sufficient resource availability
– Certify at “design time” that all the timing

constraints of the application will be met
For static systems, 100% guarantees can be
given at design time
– Immutable workload and system resources
– System must be re-certified if anything changes

54

Dynamic PredictabilityDynamic Predictability

Dynamic systems: not statically defined
– Changeable system configuration
– Changeable workload

Dynamic predictability
– Under appropriate assumptions (sufficient

resources)
– Tasks will satisfy time constraints

28

55

ReliabilityReliability

Reliability
– Randell et al (1978)

“a measure of the success with which the
system conforms to some authoritative
specification of its behavior“

Safety and reliability often interchangeable
– Usually expressed in probabilities

Other frequently used term: dependability.

56

Role of Operating SystemsRole of Operating Systems

Hardware

Operating System
User Programs

Typical OS Configuration

Hardware

Including Operating

System Components

User Program

Typical Embedded Configuration

29

57

RealReal--Time Time OSsOSs

Real-Time OS: VxWorks, QNX, LynxOS,
eCos, DeltaOS, PSX, embOS, ...
GPOS: no support for real-time
applications, focus on ‘fairness’.
BUT, people love GPOSs, e.g., Linux:
– RTLinux (FSMLabs)
– KURT (Kansas U.)
– Linux/RT (TimeSys)

58

RT RT OSsOSs

Determinism / Predictability
– Ability to meet deadlines
– Traditional operating systems non-deterministic

Standards: Real-Time POSIX 1003.1
– Pre-emptive fixed-priority scheduling
– Synchronization methods
– Task scheduling options

30

59

Lynx OSLynx OS

Lynx OS
– Microkernel Architecture
– Provides scheduling, interrupt, and

synchronization support
– Real-Time POSIX support
– Easy transition from Linux

60

VxWorksVxWorks
Monolithic Kernel
– Reduced run-time overhead, but increased kernel size

compared to Microkernel designs
Supports Real-Time POSIX standards
Common in industry
– Mars missions
– Honda ASIMO robot
– Switches
– MRI scanners
– Car engine control systems

31

61

RT LinuxRT Linux

“Workaround” on top of a generic O/S
– Generic O/S – optimizes average case scenario
– RTOS – need to consider WORST CASE

scenarios to ensure deadlines are met
Dual-kernel approach
– Makes Linux a low-priority pre-emptable

thread running on a separate RTLinux kernel
– Tradeoff between determinism of pure real-

time O/S and flexibility of conventional O/S
Periodic tasks only

62

RT ConceptsRT Concepts

Concurrency
Scheduling: priorities, time driven, event
driven, task scheduling (RMS).
Processes, threads.
Synchronization: test-and-set instructions,
semaphores, deadlocks (circular waits), ...

32

63

RT SchedulingRT Scheduling
static: all scheduling decisions are determined
before execution.
dynamic: run-time decisions are used.
periodic: processes that repeatedly execute
aperiodic: processes that are triggered by
asynchronous events from the physical world.
sporadic: aperiodic processes w/ known minimum
inter-arrival jitter between any two aperiodic
events.

64

Preemptive vs. NonPreemptive vs. Non--preemptivepreemptive
Preemptive Scheduling
– Task execution is preempted and resumed later.
– Preemption takes place to execute a higher priority task.
– Offers higher schedulability.
– Involves higher scheduling overhead due to context

switching.
Non-preemptive Scheduling
– Once a task is started executing, it completes its

execution.
– Offers lower schedulability.
– Has less scheduling overhead because of less context

switching.

33

65

Rate Monotonic Priority Rate Monotonic Priority
AssignmentAssignment

each process has a unique priority based on
its period; the shorter the period, the higher
the priority.
Rate Monotonic proven optimal in the sense
that if any process set can be scheduled
(using preemptive priority-based
scheduling) with a fixed priority-based
assignment scheme, then RMA can also
schedule the process set.

66

Rate Monotonic AnalysisRate Monotonic Analysis

Each task has a period T and run-time C.
System utilization U=Σ(Ci/Ti). Measure for
computational load on the CPU due to the
task set.
There exists a maximum value of U, below
which a task set is schedulable and above
which it is not schedulable.
Liu and Layland 1973

Σ(Ci/Ti) <= n(21/n-1)

34

67

RealReal--Time LanguagesTime Languages
Support for the management of time
– Language constructs for expressing timing

constraint, keeping track of resource utilization.
Schedulability analysis
– Aid compile-time schedulability check.

Reusable real-time software modules
– Object-oriented methodology.

Support for distributed programming and
fault-tolerance

68

RealReal--Time DatabasesTime Databases

Most conventional database systems are
disk-based.
They use transaction logging and two-phase
locking protocols to ensure transaction
atomicity and serializability.
These characteristics preserve data integrity,
but they also result in relatively slow and
unpredictable response times.

35

69

RealReal--Time Databases (2)Time Databases (2)
In a real-time database system,
important issues include:
– transaction scheduling to meet deadlines.
– explicit semantics for specifying timing

and other constraints.
– checking the database system’s ability of

meeting transaction deadlines during
application initialization.

70

Ubiquitous ComputingUbiquitous Computing
Make computers invisible, so embedded , so
fitting, so natural, that we use it without
even thinking about it.

36

71

Another Vision of FutureAnother Vision of Future

Autonomous Computing:
– self-configurable
– self-adapting
– optimizing
– self-healing

Building real-time systems:
– toolkits, validation tools, program composition
– Boeing 777: $4Billion, >50% system

integration & validation!

72

New ConstraintsNew Constraints
Soft real-time applications:
– mainstream applications
– notion of QoS

Multi-dimensional requirements:
– real-time, power, size, cost, security, fault

tolerance
– conflicting resource requirements and system

architecture
Unpredictable environments:
– Internet (servers), real-time databases, ...

37

73

RTES SystemsRTES Systems

An “engineering approach” to RTES
– Model of RTE systems (e.g., tasks with time

constraints)
– Techniques that satisfy the constraints (e.g.,

scheduling algorithms such as RMA)
– Implementation of these techniques

Uncertainties of today’s environments
– Ubiquitous/pervasive/environmental computing

74

DiscussionDiscussion

Technical components of RTES
– Same as “normal” computer systems?

Extra-functional requirements of RTES
– System performance, availability, reliability,

security, trust
– Information security, privacy, trust
– Adaptiveness, renewability

38

75

EndEnd--toto--end Propertiesend Properties

Real-time requirements
– Need to achieve some goals (e.g., enough CPU

to finish a job) before deadline
End-to-end properties (limited by the
weakest link)
– Performance bottlenecks (e.g., bandwidth and

latency in networks)
– Reliability, availability, security

Soft real-time multimedia application

76

OREGON GRADUATE INSTITUTE
—OF—

SCIENCE & TECHNOLOGY

Quality-driven
packet prioritizer

User’s quality
preferences

Media
server

Quality of Service

Microprogram

Quality Exception Feedback

Media pipeline

Priority-based
packet dropper

Resource Capacity

Feedback

Feedback-based adaptive
resource management

adjust dropping
threshold

Storage
OS

Application
Network

39

77

Multimedia RequirementsMultimedia Requirements
Table 1

351 MBpsHDTV video
(1024x2000x24)

8.7 MBpsNTSC video
(640x480x8 bits)

0.18 MBpsCD quality audio
(2x16 at 44.1 kHz)

0.008 MBpsVoice audio

Bandwidth
requirements

Media
Specifications

78

Buffer RequirementsBuffer Requirements

40

79

Storage Server RequirementsStorage Server Requirements

Achieve simultaneous serving
– Processing in rounds (each round per stream)

Production keeps up with consumption
– Buffer-conserving (no decrease in the amount

of buffered data)
Duration of a round
– Retrieving media blocks from storage
– Regular playback according to media spec

80

Media Block RetrievalMedia Block Retrieval

Need enough blocks for each round
– Transmission + rotational delay + seek time

Seek time dominates (tens of milliseconds)
– Disk scheduling algorithms (e.g., Grouped

Sweeping Scheme)
Prevention of saturation
– Admission control

41

81

Block Placement OptimizationBlock Placement Optimization

Disk storage and retrieval times
– Contiguous (easiest retrieval)
– Scattered (scheduled retrieval)

Multiple disks
– RAID data striping (low level synchronization)
– Data interleaving (high level synchronization)
– Combination of striping/interleaving

82

Disk/Memory HierarchiesDisk/Memory Hierarchies

Single disks attached to processor bus
Multiple disks networked to server
– Attached to some bus (RAID)
– Networked through SAN
– Networked through new protocols, e.g., IPSCSI

Clustered server machines
– Very fast processors
– Caches, main memory, silicon memory, etc

42

83

Adaptive Suspension VehicleAdaptive Suspension Vehicle

84

Control Software ComponentsControl Software Components

43

85

GEM Robotics OSGEM Robotics OS
CPU management
– Processes and Microprocesses

Memory management
– GEM process = single address space

Inter-task communications
– Asynchronous execution with data loss (under

saturation
– Synchronous execution without data loss
– Hybrid combining async and sync

86

Communications ExampleCommunications Example

44

87

GEM Hardware PlatformGEM Hardware Platform
Parallel processors
– 2 clusters (11 + 6)
– 8086 (8 MHz,

750ns basic cycle)
– 8087 co-processor
– 128Kb-256Kb

memory (750ns)

GEM configuration
– Kernel: 20Kb

88

Process Switch TimeProcess Switch Time

45

89

MicroprocessMicroprocess SavingsSavings

Microprocess overhead includes accessing parent process

90

Communications OverheadCommunications Overhead

46

91

InterInter--cluster Overheadcluster Overhead

92

DiscussionDiscussion

Impact of Moore’s Law on RTES
– CPU (power, multicore)
– Storage (memory, disk)
– Network (wireless bandwidth)

What are the (new) requirements of modern
RTES?
What are the principles that guarantee
RTES will work as designed?

